{"title":"基于 Lyapunov 矩阵的自适应弹性控制,用于具有传感器和推进器攻击的无人驾驶海洋飞行器。","authors":"Xin Yang , Li-Ying Hao , Yang Xiao , Tieshan Li","doi":"10.1016/j.isatra.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the design of a Lyapunov matrix-based adaptive resilient controller for unmanned marine vehicles (UMVs) under state-dependent sensor attacks, input-dependent thruster attacks, and time delays. Different from the thruster attack model that depends on state information, the thruster attack model studied in this paper is related to control input, that is, the input-dependent thruster attacks. This implies that the designed correction signal is also affected by the attacks. To mitigate the impact of the considered sensor attacks and thruster attacks on UMVs, an adaptive mechanism is employed to estimate the attack factors. Furthermore, a Lyapunov matrix-based complete-type Lyapunov–Krasovskii functional (LKF) is introduced, in which more comprehensive time delay information are considered. Based on this, linear matrix inequality (LMI) method and Jensen’s inequality are used to obtain sufficient conditions for the existence of the controller. The proposed controller guarantees that the state errors of UMVs converge asymptotically to zero with the adaptive <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance index no larger than <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Finally, the efficacy of the proposed approach is verified by simulation results.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"153 ","pages":"Pages 70-77"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lyapunov matrix-based adaptive resilient control for unmanned marine vehicles with sensor and thruster attacks\",\"authors\":\"Xin Yang , Li-Ying Hao , Yang Xiao , Tieshan Li\",\"doi\":\"10.1016/j.isatra.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the design of a Lyapunov matrix-based adaptive resilient controller for unmanned marine vehicles (UMVs) under state-dependent sensor attacks, input-dependent thruster attacks, and time delays. Different from the thruster attack model that depends on state information, the thruster attack model studied in this paper is related to control input, that is, the input-dependent thruster attacks. This implies that the designed correction signal is also affected by the attacks. To mitigate the impact of the considered sensor attacks and thruster attacks on UMVs, an adaptive mechanism is employed to estimate the attack factors. Furthermore, a Lyapunov matrix-based complete-type Lyapunov–Krasovskii functional (LKF) is introduced, in which more comprehensive time delay information are considered. Based on this, linear matrix inequality (LMI) method and Jensen’s inequality are used to obtain sufficient conditions for the existence of the controller. The proposed controller guarantees that the state errors of UMVs converge asymptotically to zero with the adaptive <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance index no larger than <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Finally, the efficacy of the proposed approach is verified by simulation results.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"153 \",\"pages\":\"Pages 70-77\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003781\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003781","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Lyapunov matrix-based adaptive resilient control for unmanned marine vehicles with sensor and thruster attacks
This paper presents the design of a Lyapunov matrix-based adaptive resilient controller for unmanned marine vehicles (UMVs) under state-dependent sensor attacks, input-dependent thruster attacks, and time delays. Different from the thruster attack model that depends on state information, the thruster attack model studied in this paper is related to control input, that is, the input-dependent thruster attacks. This implies that the designed correction signal is also affected by the attacks. To mitigate the impact of the considered sensor attacks and thruster attacks on UMVs, an adaptive mechanism is employed to estimate the attack factors. Furthermore, a Lyapunov matrix-based complete-type Lyapunov–Krasovskii functional (LKF) is introduced, in which more comprehensive time delay information are considered. Based on this, linear matrix inequality (LMI) method and Jensen’s inequality are used to obtain sufficient conditions for the existence of the controller. The proposed controller guarantees that the state errors of UMVs converge asymptotically to zero with the adaptive performance index no larger than . Finally, the efficacy of the proposed approach is verified by simulation results.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.