{"title":"用于视频异常检测的三元组特征接近学习","authors":"Kuldeep Marotirao Biradar , Murari Mandal , Sachin Dube , Santosh Kumar Vipparthi , Dinesh Kumar Tyagi","doi":"10.1016/j.imavis.2024.105205","DOIUrl":null,"url":null,"abstract":"<div><p>The identification of anomalies in videos is a particularly complex visual challenge, given the wide variety of potential real-world events. To address this issue, our paper introduces a unique approach for detecting divergent behavior in surveillance videos, utilizing triplet-loss for video anomaly detection. Our method involves selecting a triplet set of video segments from normal (n) and abnormal (a) data points for deep feature learning. We begin by creating a database of triplet sets of two types: a-a-n and n-n-a. By computing a triplet loss, we model the proximity between n-n chunks and the distance between ‘a’ chunks from the n-n ones. Additionally, we train the deep network to model the closeness of a-a chunks and the divergent behavior of ‘n’ from the a-a chunks.</p><p>The model acquired in the initial stage can be viewed as a prior, which is subsequently employed for modeling normality. As a result, our method can leverage the advantages of both straightforward classification and normality modeling-based techniques. We also present a data selection mechanism for the efficient generation of triplet sets. Furthermore, we introduce a novel video anomaly dataset, AnoVIL, designed for human-centric anomaly detection. Our proposed method is assessed using the UCF-Crime dataset encompassing all 13 categories, the IIT-H accident dataset, and AnoVIL. The experimental findings demonstrate that our method surpasses the current state-of-the-art approaches. We conduct further evaluations of the performance, considering various configurations such as cross-dataset evaluation, loss functions, siamese structure, and embedding size. Additionally, an ablation study is carried out across different settings to provide insights into our proposed method.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"150 ","pages":"Article 105205"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triplet-set feature proximity learning for video anomaly detection\",\"authors\":\"Kuldeep Marotirao Biradar , Murari Mandal , Sachin Dube , Santosh Kumar Vipparthi , Dinesh Kumar Tyagi\",\"doi\":\"10.1016/j.imavis.2024.105205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The identification of anomalies in videos is a particularly complex visual challenge, given the wide variety of potential real-world events. To address this issue, our paper introduces a unique approach for detecting divergent behavior in surveillance videos, utilizing triplet-loss for video anomaly detection. Our method involves selecting a triplet set of video segments from normal (n) and abnormal (a) data points for deep feature learning. We begin by creating a database of triplet sets of two types: a-a-n and n-n-a. By computing a triplet loss, we model the proximity between n-n chunks and the distance between ‘a’ chunks from the n-n ones. Additionally, we train the deep network to model the closeness of a-a chunks and the divergent behavior of ‘n’ from the a-a chunks.</p><p>The model acquired in the initial stage can be viewed as a prior, which is subsequently employed for modeling normality. As a result, our method can leverage the advantages of both straightforward classification and normality modeling-based techniques. We also present a data selection mechanism for the efficient generation of triplet sets. Furthermore, we introduce a novel video anomaly dataset, AnoVIL, designed for human-centric anomaly detection. Our proposed method is assessed using the UCF-Crime dataset encompassing all 13 categories, the IIT-H accident dataset, and AnoVIL. The experimental findings demonstrate that our method surpasses the current state-of-the-art approaches. We conduct further evaluations of the performance, considering various configurations such as cross-dataset evaluation, loss functions, siamese structure, and embedding size. Additionally, an ablation study is carried out across different settings to provide insights into our proposed method.</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"150 \",\"pages\":\"Article 105205\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026288562400310X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026288562400310X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Triplet-set feature proximity learning for video anomaly detection
The identification of anomalies in videos is a particularly complex visual challenge, given the wide variety of potential real-world events. To address this issue, our paper introduces a unique approach for detecting divergent behavior in surveillance videos, utilizing triplet-loss for video anomaly detection. Our method involves selecting a triplet set of video segments from normal (n) and abnormal (a) data points for deep feature learning. We begin by creating a database of triplet sets of two types: a-a-n and n-n-a. By computing a triplet loss, we model the proximity between n-n chunks and the distance between ‘a’ chunks from the n-n ones. Additionally, we train the deep network to model the closeness of a-a chunks and the divergent behavior of ‘n’ from the a-a chunks.
The model acquired in the initial stage can be viewed as a prior, which is subsequently employed for modeling normality. As a result, our method can leverage the advantages of both straightforward classification and normality modeling-based techniques. We also present a data selection mechanism for the efficient generation of triplet sets. Furthermore, we introduce a novel video anomaly dataset, AnoVIL, designed for human-centric anomaly detection. Our proposed method is assessed using the UCF-Crime dataset encompassing all 13 categories, the IIT-H accident dataset, and AnoVIL. The experimental findings demonstrate that our method surpasses the current state-of-the-art approaches. We conduct further evaluations of the performance, considering various configurations such as cross-dataset evaluation, loss functions, siamese structure, and embedding size. Additionally, an ablation study is carried out across different settings to provide insights into our proposed method.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.