{"title":"基于图深度学习的电力系统运行自适应功率流分析","authors":"","doi":"10.1016/j.ijepes.2024.110166","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional model-driven methods are hard to handle large-scale power flow with multivariate uncertainty, variable topology, and massive real-time repetitive calculations. With the ability to deal with non-Euclidean graph-structured power system data, graph deep learning shows great potential in modern power flow calculation. However, general graph deep learning based power flow calculation has limited adaptability because of its sole mapping of node information and black-box attributes. In this paper, an edge graph attention network based power flow calculation (EGAT-PFC) model is proposed with improved adaptability for power flow analysis of complex system scenarios. First, the dual-model structure of the node model and edge model is constructed to realize a complete power flow mapping covering all information in power systems. Second, an improved learnable attention coefficient mechanism fusing node and edge features is proposed to ensure global information can be completely considered. Third, mechanisms of extended first-order neighborhood, dynamic normalization, and regularization-based loss function are designed to improve training performance. Finally, visualized interpretability is developed to show valuable information of vulnerable nodes and lines of power system operation. The numerical simulation verifies that EGAT-PFC has high accuracy, fast mapping, as well as excellent adaptability to variable topologies.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524003879/pdfft?md5=f4ea995df3c4e8fb12fe59bb97d91339&pid=1-s2.0-S0142061524003879-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adaptive power flow analysis for power system operation based on graph deep learning\",\"authors\":\"\",\"doi\":\"10.1016/j.ijepes.2024.110166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional model-driven methods are hard to handle large-scale power flow with multivariate uncertainty, variable topology, and massive real-time repetitive calculations. With the ability to deal with non-Euclidean graph-structured power system data, graph deep learning shows great potential in modern power flow calculation. However, general graph deep learning based power flow calculation has limited adaptability because of its sole mapping of node information and black-box attributes. In this paper, an edge graph attention network based power flow calculation (EGAT-PFC) model is proposed with improved adaptability for power flow analysis of complex system scenarios. First, the dual-model structure of the node model and edge model is constructed to realize a complete power flow mapping covering all information in power systems. Second, an improved learnable attention coefficient mechanism fusing node and edge features is proposed to ensure global information can be completely considered. Third, mechanisms of extended first-order neighborhood, dynamic normalization, and regularization-based loss function are designed to improve training performance. Finally, visualized interpretability is developed to show valuable information of vulnerable nodes and lines of power system operation. The numerical simulation verifies that EGAT-PFC has high accuracy, fast mapping, as well as excellent adaptability to variable topologies.</p></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142061524003879/pdfft?md5=f4ea995df3c4e8fb12fe59bb97d91339&pid=1-s2.0-S0142061524003879-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524003879\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524003879","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Adaptive power flow analysis for power system operation based on graph deep learning
Conventional model-driven methods are hard to handle large-scale power flow with multivariate uncertainty, variable topology, and massive real-time repetitive calculations. With the ability to deal with non-Euclidean graph-structured power system data, graph deep learning shows great potential in modern power flow calculation. However, general graph deep learning based power flow calculation has limited adaptability because of its sole mapping of node information and black-box attributes. In this paper, an edge graph attention network based power flow calculation (EGAT-PFC) model is proposed with improved adaptability for power flow analysis of complex system scenarios. First, the dual-model structure of the node model and edge model is constructed to realize a complete power flow mapping covering all information in power systems. Second, an improved learnable attention coefficient mechanism fusing node and edge features is proposed to ensure global information can be completely considered. Third, mechanisms of extended first-order neighborhood, dynamic normalization, and regularization-based loss function are designed to improve training performance. Finally, visualized interpretability is developed to show valuable information of vulnerable nodes and lines of power system operation. The numerical simulation verifies that EGAT-PFC has high accuracy, fast mapping, as well as excellent adaptability to variable topologies.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.