Kuang-Yao Chen , Chien-Ju Cheng , Yuan-Ting Chang , Yi-Hsuan Lin , Yi-Hao Huang , Sheng-Yu Lin , Lian-Chen Wang , Kai-Yuan Jhan , Cheng-Hsun Chiu
{"title":"小鼠脑部星形胶质细胞经哈密金眼蛛排泄-分泌产物处理后,苯甲醛通过声刺猬信号通路刺激其进行自噬","authors":"Kuang-Yao Chen , Chien-Ju Cheng , Yuan-Ting Chang , Yi-Hsuan Lin , Yi-Hao Huang , Sheng-Yu Lin , Lian-Chen Wang , Kai-Yuan Jhan , Cheng-Hsun Chiu","doi":"10.1016/j.ijpddr.2024.100560","DOIUrl":null,"url":null,"abstract":"<div><p>Autophagy is a vital cellular process responsible for digesting various cytoplasmic organelles. This process plays a crucial role in maintaining cell survival and homeostasis, especially under conditions that cause nutrient deficiency, cellular damage, and oxidative stress. Neuroangiostrongyliasis is an infection caused by the parasitic nematode <em>Angiostrongylus cantonensis</em> and is considered as an emerging disease in many parts of the world. However, effective therapeutic strategies for neuroangiostrongyliasis still need to be further developed. In this study, we investigated the effects of benzaldehyde treatment on autophagy and sonic hedgehog (Shh) signaling in <em>A. cantonensis-</em>infected mice and its mechanisms. First, we found autophagosome generation in the central nervous system after <em>A. cantonensis</em> infection. Next, benzaldehyde combined with albendazole treatment reduced eosinophilic meningitis and upregulated the expression of Shh signaling- and autophagy-related molecules in <em>A. cantonensis</em>-infected mouse brains. In vitro experiments demonstrated that benzaldehyde could induce autophagy via the Shh signaling pathway in <em>A. cantonensis</em> excretory-secretory products (ESPs)-treated mouse astrocytes. Finally, benzaldehyde treatment also decreased lipid droplet accumulation and increased cholesterol production by activating the Shh pathway after ESPs treatment. In conclusion, these findings suggested that benzaldehyde treatment could alleviate brain damage by stimulating autophagy generation through the Shh signaling pathway.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"26 ","pages":"Article 100560"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211320724000411/pdfft?md5=cf24b1d2bd7ceca652003c382746d431&pid=1-s2.0-S2211320724000411-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Benzaldehyde stimulates autophagy via the sonic hedgehog signaling pathway in mouse brain astrocytes after treatment with Angiostrongylus cantonensis excretory-secretory products\",\"authors\":\"Kuang-Yao Chen , Chien-Ju Cheng , Yuan-Ting Chang , Yi-Hsuan Lin , Yi-Hao Huang , Sheng-Yu Lin , Lian-Chen Wang , Kai-Yuan Jhan , Cheng-Hsun Chiu\",\"doi\":\"10.1016/j.ijpddr.2024.100560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autophagy is a vital cellular process responsible for digesting various cytoplasmic organelles. This process plays a crucial role in maintaining cell survival and homeostasis, especially under conditions that cause nutrient deficiency, cellular damage, and oxidative stress. Neuroangiostrongyliasis is an infection caused by the parasitic nematode <em>Angiostrongylus cantonensis</em> and is considered as an emerging disease in many parts of the world. However, effective therapeutic strategies for neuroangiostrongyliasis still need to be further developed. In this study, we investigated the effects of benzaldehyde treatment on autophagy and sonic hedgehog (Shh) signaling in <em>A. cantonensis-</em>infected mice and its mechanisms. First, we found autophagosome generation in the central nervous system after <em>A. cantonensis</em> infection. Next, benzaldehyde combined with albendazole treatment reduced eosinophilic meningitis and upregulated the expression of Shh signaling- and autophagy-related molecules in <em>A. cantonensis</em>-infected mouse brains. In vitro experiments demonstrated that benzaldehyde could induce autophagy via the Shh signaling pathway in <em>A. cantonensis</em> excretory-secretory products (ESPs)-treated mouse astrocytes. Finally, benzaldehyde treatment also decreased lipid droplet accumulation and increased cholesterol production by activating the Shh pathway after ESPs treatment. In conclusion, these findings suggested that benzaldehyde treatment could alleviate brain damage by stimulating autophagy generation through the Shh signaling pathway.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"26 \",\"pages\":\"Article 100560\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000411/pdfft?md5=cf24b1d2bd7ceca652003c382746d431&pid=1-s2.0-S2211320724000411-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000411\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320724000411","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Benzaldehyde stimulates autophagy via the sonic hedgehog signaling pathway in mouse brain astrocytes after treatment with Angiostrongylus cantonensis excretory-secretory products
Autophagy is a vital cellular process responsible for digesting various cytoplasmic organelles. This process plays a crucial role in maintaining cell survival and homeostasis, especially under conditions that cause nutrient deficiency, cellular damage, and oxidative stress. Neuroangiostrongyliasis is an infection caused by the parasitic nematode Angiostrongylus cantonensis and is considered as an emerging disease in many parts of the world. However, effective therapeutic strategies for neuroangiostrongyliasis still need to be further developed. In this study, we investigated the effects of benzaldehyde treatment on autophagy and sonic hedgehog (Shh) signaling in A. cantonensis-infected mice and its mechanisms. First, we found autophagosome generation in the central nervous system after A. cantonensis infection. Next, benzaldehyde combined with albendazole treatment reduced eosinophilic meningitis and upregulated the expression of Shh signaling- and autophagy-related molecules in A. cantonensis-infected mouse brains. In vitro experiments demonstrated that benzaldehyde could induce autophagy via the Shh signaling pathway in A. cantonensis excretory-secretory products (ESPs)-treated mouse astrocytes. Finally, benzaldehyde treatment also decreased lipid droplet accumulation and increased cholesterol production by activating the Shh pathway after ESPs treatment. In conclusion, these findings suggested that benzaldehyde treatment could alleviate brain damage by stimulating autophagy generation through the Shh signaling pathway.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.