Boyu Xia, Huilong Chen, Sarah J Taleb, Xiaoqing Xi, Nargis Shaheen, Boina Baoyinna, Sourabh Soni, Yohannes A Mebratu, Jacob S Yount, Jing Zhao, Yutong Zhao
{"title":"内皮细胞中的 FBXL19 通过增强抗病毒免疫力和减少细胞衰老程序保护心脏免受甲型流感感染","authors":"Boyu Xia, Huilong Chen, Sarah J Taleb, Xiaoqing Xi, Nargis Shaheen, Boina Baoyinna, Sourabh Soni, Yohannes A Mebratu, Jacob S Yount, Jing Zhao, Yutong Zhao","doi":"10.1152/ajpheart.00371.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza A virus (IAV) infection while primarily affecting the lungs, is often associated with cardiovascular complications. However, the mechanisms underlying this association are not fully understood. Here, we investigated the potential role of FBXL19, a member of the Skp1-Cullin-1-F-box family of E3 ubiquitin ligase, in IAV-induced cardiac inflammation. We demonstrated that FBXL19 overexpression in endothelial cells (ECs) reduced viral titers and IAV matrix protein 1 (M1) levels while increasing antiviral gene expression, including interferon (IFN)-α, -β, and -γ and RANTES (regulated on activation normal T cell expressed and secreted) in the cardiac tissue of IAV-infected mice. Moreover, EC-specific overexpression of FBXL19 attenuated the IAV infection-reduced interferon regulatory factor 3 (IRF3) level without altering its mRNA level and suppressed cardiac inflammation. Furthermore, IAV infection triggered cellular senescence programs in the heart as indicated by the upregulation of p16 and p21 mRNA levels and the downregulation of lamin-B1 levels, which were partially reversed by FBXL19 overexpression in ECs. Our findings indicate that EC-specific overexpression of FBXL19 protects against IAV-induced cardiac damage by enhancing interferon-mediated antiviral signaling, reducing cardiac inflammation, and suppressing cellular senescence programs.<b>NEW & NOTEWORTHY</b> Our study reveals a novel facet of IAV infection, demonstrating that it can trigger cellular senescence within the heart. Intriguingly, upregulation of endothelial FBXL19 promotes host innate immunity, reduces cardiac senescence, and diminishes inflammation. These findings highlight the therapeutic potential of targeting FBXL19 to mitigate IAV-induced cardiovascular complications.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H937-H946"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482256/pdf/","citationCount":"0","resultStr":"{\"title\":\"FBXL19 in endothelial cells protects the heart from influenza A infection by enhancing antiviral immunity and reducing cellular senescence programs.\",\"authors\":\"Boyu Xia, Huilong Chen, Sarah J Taleb, Xiaoqing Xi, Nargis Shaheen, Boina Baoyinna, Sourabh Soni, Yohannes A Mebratu, Jacob S Yount, Jing Zhao, Yutong Zhao\",\"doi\":\"10.1152/ajpheart.00371.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Influenza A virus (IAV) infection while primarily affecting the lungs, is often associated with cardiovascular complications. However, the mechanisms underlying this association are not fully understood. Here, we investigated the potential role of FBXL19, a member of the Skp1-Cullin-1-F-box family of E3 ubiquitin ligase, in IAV-induced cardiac inflammation. We demonstrated that FBXL19 overexpression in endothelial cells (ECs) reduced viral titers and IAV matrix protein 1 (M1) levels while increasing antiviral gene expression, including interferon (IFN)-α, -β, and -γ and RANTES (regulated on activation normal T cell expressed and secreted) in the cardiac tissue of IAV-infected mice. Moreover, EC-specific overexpression of FBXL19 attenuated the IAV infection-reduced interferon regulatory factor 3 (IRF3) level without altering its mRNA level and suppressed cardiac inflammation. Furthermore, IAV infection triggered cellular senescence programs in the heart as indicated by the upregulation of p16 and p21 mRNA levels and the downregulation of lamin-B1 levels, which were partially reversed by FBXL19 overexpression in ECs. Our findings indicate that EC-specific overexpression of FBXL19 protects against IAV-induced cardiac damage by enhancing interferon-mediated antiviral signaling, reducing cardiac inflammation, and suppressing cellular senescence programs.<b>NEW & NOTEWORTHY</b> Our study reveals a novel facet of IAV infection, demonstrating that it can trigger cellular senescence within the heart. Intriguingly, upregulation of endothelial FBXL19 promotes host innate immunity, reduces cardiac senescence, and diminishes inflammation. These findings highlight the therapeutic potential of targeting FBXL19 to mitigate IAV-induced cardiovascular complications.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"H937-H946\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482256/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00371.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1152/ajpheart.00371.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
FBXL19 in endothelial cells protects the heart from influenza A infection by enhancing antiviral immunity and reducing cellular senescence programs.
Influenza A virus (IAV) infection while primarily affecting the lungs, is often associated with cardiovascular complications. However, the mechanisms underlying this association are not fully understood. Here, we investigated the potential role of FBXL19, a member of the Skp1-Cullin-1-F-box family of E3 ubiquitin ligase, in IAV-induced cardiac inflammation. We demonstrated that FBXL19 overexpression in endothelial cells (ECs) reduced viral titers and IAV matrix protein 1 (M1) levels while increasing antiviral gene expression, including interferon (IFN)-α, -β, and -γ and RANTES (regulated on activation normal T cell expressed and secreted) in the cardiac tissue of IAV-infected mice. Moreover, EC-specific overexpression of FBXL19 attenuated the IAV infection-reduced interferon regulatory factor 3 (IRF3) level without altering its mRNA level and suppressed cardiac inflammation. Furthermore, IAV infection triggered cellular senescence programs in the heart as indicated by the upregulation of p16 and p21 mRNA levels and the downregulation of lamin-B1 levels, which were partially reversed by FBXL19 overexpression in ECs. Our findings indicate that EC-specific overexpression of FBXL19 protects against IAV-induced cardiac damage by enhancing interferon-mediated antiviral signaling, reducing cardiac inflammation, and suppressing cellular senescence programs.NEW & NOTEWORTHY Our study reveals a novel facet of IAV infection, demonstrating that it can trigger cellular senescence within the heart. Intriguingly, upregulation of endothelial FBXL19 promotes host innate immunity, reduces cardiac senescence, and diminishes inflammation. These findings highlight the therapeutic potential of targeting FBXL19 to mitigate IAV-induced cardiovascular complications.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.