Cagla Cömert , Kasper Kjær-Sørensen , Jakob Hansen , Jasper Carlsen , Jesper Just , Brandon F. Meaney , Elsebet Østergaard , Yonglun Luo , Claus Oxvig , Lisbeth Schmidt-Laursen , Johan Palmfeldt , Paula Fernandez-Guerra , Peter Bross
{"title":"HSP60 合子缺乏会破坏线粒体基质蛋白组,并导致胆固醇合成失调。","authors":"Cagla Cömert , Kasper Kjær-Sørensen , Jakob Hansen , Jasper Carlsen , Jesper Just , Brandon F. Meaney , Elsebet Østergaard , Yonglun Luo , Claus Oxvig , Lisbeth Schmidt-Laursen , Johan Palmfeldt , Paula Fernandez-Guerra , Peter Bross","doi":"10.1016/j.molmet.2024.102009","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Mitochondrial proteostasis is critical for cellular function. The molecular chaperone HSP60 is essential for cell function and dysregulation of HSP60 expression has been implicated in cancer and diabetes. The few reported patients carrying HSP60 gene variants show neurodevelopmental delay and brain hypomyelination. Hsp60 interacts with more than 260 mitochondrial proteins but the mitochondrial proteins and functions affected by HSP60 deficiency are poorly characterized.</p></div><div><h3>Methods</h3><p>We studied two model systems for HSP60 deficiency: (1) engineered HEK cells carrying an inducible dominant negative HSP60 mutant protein, (2) zebrafish HSP60 knockout larvae. Both systems were analyzed by RNASeq, proteomics, and targeted metabolomics, and several functional assays relevant for the respective model. In addition, skin fibroblasts from patients with disease-associated HSP60 variants were analyzed by proteomics.</p></div><div><h3>Results</h3><p>We show that HSP60 deficiency leads to a differentially downregulated mitochondrial matrix proteome, transcriptional activation of stress responses, and dysregulated cholesterol biosynthesis. This leads to lipid accumulation in zebrafish knockout larvae.</p></div><div><h3>Conclusions</h3><p>Our data provide a compendium of the effects of HSP60 deficiency on the mitochondrial matrix proteome. We show that HSP60 is a master regulator and modulator of mitochondrial functions and metabolic pathways. HSP60 dysfunction also affects cellular metabolism and disrupts the integrated stress response. The effect on cholesterol synthesis explains the effect of HSP60 dysfunction on myelination observed in patients carrying genetic variants of HSP60.</p></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"88 ","pages":"Article 102009"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212877824001406/pdfft?md5=d1b8b84d08e9a5261b1d124f08fd7658&pid=1-s2.0-S2212877824001406-main.pdf","citationCount":"0","resultStr":"{\"title\":\"HSP60 chaperone deficiency disrupts the mitochondrial matrix proteome and dysregulates cholesterol synthesis\",\"authors\":\"Cagla Cömert , Kasper Kjær-Sørensen , Jakob Hansen , Jasper Carlsen , Jesper Just , Brandon F. Meaney , Elsebet Østergaard , Yonglun Luo , Claus Oxvig , Lisbeth Schmidt-Laursen , Johan Palmfeldt , Paula Fernandez-Guerra , Peter Bross\",\"doi\":\"10.1016/j.molmet.2024.102009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Mitochondrial proteostasis is critical for cellular function. The molecular chaperone HSP60 is essential for cell function and dysregulation of HSP60 expression has been implicated in cancer and diabetes. The few reported patients carrying HSP60 gene variants show neurodevelopmental delay and brain hypomyelination. Hsp60 interacts with more than 260 mitochondrial proteins but the mitochondrial proteins and functions affected by HSP60 deficiency are poorly characterized.</p></div><div><h3>Methods</h3><p>We studied two model systems for HSP60 deficiency: (1) engineered HEK cells carrying an inducible dominant negative HSP60 mutant protein, (2) zebrafish HSP60 knockout larvae. Both systems were analyzed by RNASeq, proteomics, and targeted metabolomics, and several functional assays relevant for the respective model. In addition, skin fibroblasts from patients with disease-associated HSP60 variants were analyzed by proteomics.</p></div><div><h3>Results</h3><p>We show that HSP60 deficiency leads to a differentially downregulated mitochondrial matrix proteome, transcriptional activation of stress responses, and dysregulated cholesterol biosynthesis. This leads to lipid accumulation in zebrafish knockout larvae.</p></div><div><h3>Conclusions</h3><p>Our data provide a compendium of the effects of HSP60 deficiency on the mitochondrial matrix proteome. We show that HSP60 is a master regulator and modulator of mitochondrial functions and metabolic pathways. HSP60 dysfunction also affects cellular metabolism and disrupts the integrated stress response. The effect on cholesterol synthesis explains the effect of HSP60 dysfunction on myelination observed in patients carrying genetic variants of HSP60.</p></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"88 \",\"pages\":\"Article 102009\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001406/pdfft?md5=d1b8b84d08e9a5261b1d124f08fd7658&pid=1-s2.0-S2212877824001406-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001406\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
HSP60 chaperone deficiency disrupts the mitochondrial matrix proteome and dysregulates cholesterol synthesis
Objective
Mitochondrial proteostasis is critical for cellular function. The molecular chaperone HSP60 is essential for cell function and dysregulation of HSP60 expression has been implicated in cancer and diabetes. The few reported patients carrying HSP60 gene variants show neurodevelopmental delay and brain hypomyelination. Hsp60 interacts with more than 260 mitochondrial proteins but the mitochondrial proteins and functions affected by HSP60 deficiency are poorly characterized.
Methods
We studied two model systems for HSP60 deficiency: (1) engineered HEK cells carrying an inducible dominant negative HSP60 mutant protein, (2) zebrafish HSP60 knockout larvae. Both systems were analyzed by RNASeq, proteomics, and targeted metabolomics, and several functional assays relevant for the respective model. In addition, skin fibroblasts from patients with disease-associated HSP60 variants were analyzed by proteomics.
Results
We show that HSP60 deficiency leads to a differentially downregulated mitochondrial matrix proteome, transcriptional activation of stress responses, and dysregulated cholesterol biosynthesis. This leads to lipid accumulation in zebrafish knockout larvae.
Conclusions
Our data provide a compendium of the effects of HSP60 deficiency on the mitochondrial matrix proteome. We show that HSP60 is a master regulator and modulator of mitochondrial functions and metabolic pathways. HSP60 dysfunction also affects cellular metabolism and disrupts the integrated stress response. The effect on cholesterol synthesis explains the effect of HSP60 dysfunction on myelination observed in patients carrying genetic variants of HSP60.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.