{"title":"从新的角度看 microRNA 引导的基因调控特异性及其对转录因子和 RNA 结合蛋白的潜在普适性。","authors":"Hervé Seitz","doi":"10.1093/nar/gkae694","DOIUrl":null,"url":null,"abstract":"<p><p>Our conception of gene regulation specificity has undergone profound changes over the last 20 years. Previously, regulators were considered to control few genes, recognized with exquisite specificity by a 'lock and key' mechanism. However, recently genome-wide exploration of regulator binding site occupancy (whether on DNA or RNA targets) revealed extensive lists of molecular targets for every studied regulator. Such poor biochemical specificity suggested that each regulator controls many genes, collectively contributing to biological phenotypes. Here, I propose a third model, whereby regulators' biological specificity is only partially due to 'lock and key' biochemistry. Rather, regulators affect many genes at the microscopic scale, but biological consequences for most interactions are attenuated at the mesoscopic scale: only a few regulatory events propagate from microscopic to macroscopic scale; others are made inconsequential by homeostatic mechanisms. This model is well supported by the microRNA literature, and data suggest that it extends to other regulators. It reconciles contradicting observations from biochemistry and comparative genomics on one hand and in vivo genetics on the other hand, but this conceptual unification is obscured by common misconceptions and counter-intuitive modes of graphical display. Profound understanding of gene regulation requires conceptual clarification, and better suited statistical analyses and graphical representation.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381331/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new perspective on microRNA-guided gene regulation specificity, and its potential generalization to transcription factors and RNA-binding proteins.\",\"authors\":\"Hervé Seitz\",\"doi\":\"10.1093/nar/gkae694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our conception of gene regulation specificity has undergone profound changes over the last 20 years. Previously, regulators were considered to control few genes, recognized with exquisite specificity by a 'lock and key' mechanism. However, recently genome-wide exploration of regulator binding site occupancy (whether on DNA or RNA targets) revealed extensive lists of molecular targets for every studied regulator. Such poor biochemical specificity suggested that each regulator controls many genes, collectively contributing to biological phenotypes. Here, I propose a third model, whereby regulators' biological specificity is only partially due to 'lock and key' biochemistry. Rather, regulators affect many genes at the microscopic scale, but biological consequences for most interactions are attenuated at the mesoscopic scale: only a few regulatory events propagate from microscopic to macroscopic scale; others are made inconsequential by homeostatic mechanisms. This model is well supported by the microRNA literature, and data suggest that it extends to other regulators. It reconciles contradicting observations from biochemistry and comparative genomics on one hand and in vivo genetics on the other hand, but this conceptual unification is obscured by common misconceptions and counter-intuitive modes of graphical display. Profound understanding of gene regulation requires conceptual clarification, and better suited statistical analyses and graphical representation.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae694\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae694","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A new perspective on microRNA-guided gene regulation specificity, and its potential generalization to transcription factors and RNA-binding proteins.
Our conception of gene regulation specificity has undergone profound changes over the last 20 years. Previously, regulators were considered to control few genes, recognized with exquisite specificity by a 'lock and key' mechanism. However, recently genome-wide exploration of regulator binding site occupancy (whether on DNA or RNA targets) revealed extensive lists of molecular targets for every studied regulator. Such poor biochemical specificity suggested that each regulator controls many genes, collectively contributing to biological phenotypes. Here, I propose a third model, whereby regulators' biological specificity is only partially due to 'lock and key' biochemistry. Rather, regulators affect many genes at the microscopic scale, but biological consequences for most interactions are attenuated at the mesoscopic scale: only a few regulatory events propagate from microscopic to macroscopic scale; others are made inconsequential by homeostatic mechanisms. This model is well supported by the microRNA literature, and data suggest that it extends to other regulators. It reconciles contradicting observations from biochemistry and comparative genomics on one hand and in vivo genetics on the other hand, but this conceptual unification is obscured by common misconceptions and counter-intuitive modes of graphical display. Profound understanding of gene regulation requires conceptual clarification, and better suited statistical analyses and graphical representation.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.