Gülşah Kaya Aksoy, Hüseyin Gökhan Akçay, Çağlar Arı, Mehtap Adar, Mustafa Koyun, Elif Çomak, Sema Akman
{"title":"利用机器学习预测儿科肾移植受者的移植物存活率。","authors":"Gülşah Kaya Aksoy, Hüseyin Gökhan Akçay, Çağlar Arı, Mehtap Adar, Mustafa Koyun, Elif Çomak, Sema Akman","doi":"10.1007/s00467-024-06484-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Identification of factors that affect graft survival in kidney transplantation can increase graft survival and reduce mortality. Artificial intelligence modelling enables impartial evaluation of clinician bias. This study aimed to examine factors that affect the survival of grafts in paediatric kidney transplantation through the use of machine learning.</p><p><strong>Methods: </strong>A retrospective review was conducted on records of paediatric patients who underwent kidney transplantation between 1994 and 2021 and had post-transplant follow-up > 12 months. The nearest neighbour method was used to impute missing fields from a total of 48 variables in the dataset. Models including Naive Bayes, logistic regression, support vector machine (SVM), multi-layer perceptron, and XGBoost were trained to predict graft survival. The study used 80% of the patients for training and the remaining 20% for testing. Modelling success was evaluated based on accuracy and F1 score metrics.</p><p><strong>Results: </strong>The study analysed 465 kidney transplant recipients. Of these, 56.7% were male. The mean age at transplantation was 12.08 ± 5.01 years. Of the kidney transplants, 73.1% (n = 339) were from living donors, 34.5% (n = 160) were pre-emptive transplants, and 2.2% (n = 10) were second-time transplants. The machine learning model identified several features associated with graft survival, including antibody-mediated rejection (+ 0.7), acute cellular rejection (+ 0.66), eGFR at 3 years (+ 0.43), eGFR at 5 years (+ 0.34), pre-transplant peritoneal dialysis (+ 0.2), and cadaveric donor (+ 0.2). The successes of the logistic regression and SVM models were similar. The F1 score was 91.9%, and accuracy was 96.5%.</p><p><strong>Conclusion: </strong>Machine learning can be used to identify factors that affect graft survival in kidney transplant recipients. By expanding similar studies, risk maps can be created prior to transplantation.</p>","PeriodicalId":19735,"journal":{"name":"Pediatric Nephrology","volume":" ","pages":"203-211"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting graft survival in paediatric kidney transplant recipients using machine learning.\",\"authors\":\"Gülşah Kaya Aksoy, Hüseyin Gökhan Akçay, Çağlar Arı, Mehtap Adar, Mustafa Koyun, Elif Çomak, Sema Akman\",\"doi\":\"10.1007/s00467-024-06484-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Identification of factors that affect graft survival in kidney transplantation can increase graft survival and reduce mortality. Artificial intelligence modelling enables impartial evaluation of clinician bias. This study aimed to examine factors that affect the survival of grafts in paediatric kidney transplantation through the use of machine learning.</p><p><strong>Methods: </strong>A retrospective review was conducted on records of paediatric patients who underwent kidney transplantation between 1994 and 2021 and had post-transplant follow-up > 12 months. The nearest neighbour method was used to impute missing fields from a total of 48 variables in the dataset. Models including Naive Bayes, logistic regression, support vector machine (SVM), multi-layer perceptron, and XGBoost were trained to predict graft survival. The study used 80% of the patients for training and the remaining 20% for testing. Modelling success was evaluated based on accuracy and F1 score metrics.</p><p><strong>Results: </strong>The study analysed 465 kidney transplant recipients. Of these, 56.7% were male. The mean age at transplantation was 12.08 ± 5.01 years. Of the kidney transplants, 73.1% (n = 339) were from living donors, 34.5% (n = 160) were pre-emptive transplants, and 2.2% (n = 10) were second-time transplants. The machine learning model identified several features associated with graft survival, including antibody-mediated rejection (+ 0.7), acute cellular rejection (+ 0.66), eGFR at 3 years (+ 0.43), eGFR at 5 years (+ 0.34), pre-transplant peritoneal dialysis (+ 0.2), and cadaveric donor (+ 0.2). The successes of the logistic regression and SVM models were similar. The F1 score was 91.9%, and accuracy was 96.5%.</p><p><strong>Conclusion: </strong>Machine learning can be used to identify factors that affect graft survival in kidney transplant recipients. By expanding similar studies, risk maps can be created prior to transplantation.</p>\",\"PeriodicalId\":19735,\"journal\":{\"name\":\"Pediatric Nephrology\",\"volume\":\" \",\"pages\":\"203-211\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00467-024-06484-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00467-024-06484-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
Predicting graft survival in paediatric kidney transplant recipients using machine learning.
Background: Identification of factors that affect graft survival in kidney transplantation can increase graft survival and reduce mortality. Artificial intelligence modelling enables impartial evaluation of clinician bias. This study aimed to examine factors that affect the survival of grafts in paediatric kidney transplantation through the use of machine learning.
Methods: A retrospective review was conducted on records of paediatric patients who underwent kidney transplantation between 1994 and 2021 and had post-transplant follow-up > 12 months. The nearest neighbour method was used to impute missing fields from a total of 48 variables in the dataset. Models including Naive Bayes, logistic regression, support vector machine (SVM), multi-layer perceptron, and XGBoost were trained to predict graft survival. The study used 80% of the patients for training and the remaining 20% for testing. Modelling success was evaluated based on accuracy and F1 score metrics.
Results: The study analysed 465 kidney transplant recipients. Of these, 56.7% were male. The mean age at transplantation was 12.08 ± 5.01 years. Of the kidney transplants, 73.1% (n = 339) were from living donors, 34.5% (n = 160) were pre-emptive transplants, and 2.2% (n = 10) were second-time transplants. The machine learning model identified several features associated with graft survival, including antibody-mediated rejection (+ 0.7), acute cellular rejection (+ 0.66), eGFR at 3 years (+ 0.43), eGFR at 5 years (+ 0.34), pre-transplant peritoneal dialysis (+ 0.2), and cadaveric donor (+ 0.2). The successes of the logistic regression and SVM models were similar. The F1 score was 91.9%, and accuracy was 96.5%.
Conclusion: Machine learning can be used to identify factors that affect graft survival in kidney transplant recipients. By expanding similar studies, risk maps can be created prior to transplantation.
期刊介绍:
International Pediatric Nephrology Association
Pediatric Nephrology publishes original clinical research related to acute and chronic diseases that affect renal function, blood pressure, and fluid and electrolyte disorders in children. Studies may involve medical, surgical, nutritional, physiologic, biochemical, genetic, pathologic or immunologic aspects of disease, imaging techniques or consequences of acute or chronic kidney disease. There are 12 issues per year that contain Editorial Commentaries, Reviews, Educational Reviews, Original Articles, Brief Reports, Rapid Communications, Clinical Quizzes, and Letters to the Editors.