检测肺结核的自动分割和分类混合方法。

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES DIGITAL HEALTH Pub Date : 2024-08-14 eCollection Date: 2024-01-01 DOI:10.1177/20552076241271869
Muzammil Khan, Abnash Zaman, Sarwar Shah Khan, Muhammad Arshad
{"title":"检测肺结核的自动分割和分类混合方法。","authors":"Muzammil Khan, Abnash Zaman, Sarwar Shah Khan, Muhammad Arshad","doi":"10.1177/20552076241271869","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Tuberculosis (TB) remains a significant global infectious disease, posing a considerable health threat, particularly in resource-constrained regions. Due to diverse datasets, radiologists face challenges in accurately diagnosing TB using X-ray images. This study aims to propose an innovative approach leveraging image processing techniques to enhance TB diagnostic accuracy within the automatic segmentation and classification (AuSC) framework for healthcare.</p><p><strong>Methods: </strong>The AuSC of detection of TB (AuSC-DTB) framework comprises several steps: image preprocessing involving resizing and median filtering, segmentation using the random walker algorithm, and feature extraction utilizing local binary pattern and histogram of gradient descriptors. The extracted features are then classified using the support vector machine classifier to distinguish between healthy and infected chest X-ray images. The effectiveness of the proposed technique was evaluated using four distinct datasets, such as Japanese Society of Radiological Technology (JSRT), Montgomery, National Library of Medicine (NLM), and Shenzhen.</p><p><strong>Results: </strong>Experimental results demonstrate promising outcomes, with accuracy rates of 94%, 95%, 95%, and 93% achieved for JSRT, Montgomery, NLM, and Shenzhen datasets, respectively. Comparative analysis against recent studies indicates superior performance of the proposed hybrid approach.</p><p><strong>Conclusions: </strong>The presented hybrid approach within the AuSC framework showcases improved diagnostic accuracy for TB detection from diverse X-ray image datasets. Furthermore, this methodology holds promise for generalizing other diseases diagnosed through X-ray imaging. It can be adapted with computed tomography scans and magnetic resonance imaging images, extending its applicability in healthcare diagnostics.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325475/pdf/","citationCount":"0","resultStr":"{\"title\":\"A hybrid approach for automatic segmentation and classification to detect tuberculosis.\",\"authors\":\"Muzammil Khan, Abnash Zaman, Sarwar Shah Khan, Muhammad Arshad\",\"doi\":\"10.1177/20552076241271869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Tuberculosis (TB) remains a significant global infectious disease, posing a considerable health threat, particularly in resource-constrained regions. Due to diverse datasets, radiologists face challenges in accurately diagnosing TB using X-ray images. This study aims to propose an innovative approach leveraging image processing techniques to enhance TB diagnostic accuracy within the automatic segmentation and classification (AuSC) framework for healthcare.</p><p><strong>Methods: </strong>The AuSC of detection of TB (AuSC-DTB) framework comprises several steps: image preprocessing involving resizing and median filtering, segmentation using the random walker algorithm, and feature extraction utilizing local binary pattern and histogram of gradient descriptors. The extracted features are then classified using the support vector machine classifier to distinguish between healthy and infected chest X-ray images. The effectiveness of the proposed technique was evaluated using four distinct datasets, such as Japanese Society of Radiological Technology (JSRT), Montgomery, National Library of Medicine (NLM), and Shenzhen.</p><p><strong>Results: </strong>Experimental results demonstrate promising outcomes, with accuracy rates of 94%, 95%, 95%, and 93% achieved for JSRT, Montgomery, NLM, and Shenzhen datasets, respectively. Comparative analysis against recent studies indicates superior performance of the proposed hybrid approach.</p><p><strong>Conclusions: </strong>The presented hybrid approach within the AuSC framework showcases improved diagnostic accuracy for TB detection from diverse X-ray image datasets. Furthermore, this methodology holds promise for generalizing other diseases diagnosed through X-ray imaging. It can be adapted with computed tomography scans and magnetic resonance imaging images, extending its applicability in healthcare diagnostics.</p>\",\"PeriodicalId\":51333,\"journal\":{\"name\":\"DIGITAL HEALTH\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DIGITAL HEALTH\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/20552076241271869\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076241271869","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:肺结核(TB)仍然是一种重要的全球性传染病,对健康构成相当大的威胁,尤其是在资源有限的地区。由于数据集的多样性,放射科医生在使用 X 射线图像准确诊断结核病方面面临挑战。本研究旨在提出一种创新方法,利用图像处理技术在医疗保健自动分割和分类(AuSC)框架内提高结核病诊断的准确性:结核病检测的自动分割和分类(AuSC-DTB)框架包括几个步骤:涉及调整大小和中值滤波的图像预处理、使用随机漫步者算法进行分割,以及利用局部二进制模式和梯度直方图描述符进行特征提取。然后利用支持向量机分类器对提取的特征进行分类,以区分健康和受感染的胸部 X 光图像。利用日本放射技术学会(JSRT)、蒙哥马利(Montgomery)、美国国家医学图书馆(NLM)和深圳(Shenzhen)等四个不同的数据集对所提技术的有效性进行了评估:实验结果显示了良好的效果,JSRT、Montgomery、NLM 和深圳数据集的准确率分别达到 94%、95%、95% 和 93%。与近期研究的对比分析表明,所提出的混合方法性能优越:在 AuSC 框架内提出的混合方法提高了从不同 X 光图像数据集检测肺结核的诊断准确性。此外,这种方法有望推广到通过 X 射线成像诊断的其他疾病。该方法还可适用于计算机断层扫描和磁共振成像图像,从而扩展了其在医疗诊断中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid approach for automatic segmentation and classification to detect tuberculosis.

Objective: Tuberculosis (TB) remains a significant global infectious disease, posing a considerable health threat, particularly in resource-constrained regions. Due to diverse datasets, radiologists face challenges in accurately diagnosing TB using X-ray images. This study aims to propose an innovative approach leveraging image processing techniques to enhance TB diagnostic accuracy within the automatic segmentation and classification (AuSC) framework for healthcare.

Methods: The AuSC of detection of TB (AuSC-DTB) framework comprises several steps: image preprocessing involving resizing and median filtering, segmentation using the random walker algorithm, and feature extraction utilizing local binary pattern and histogram of gradient descriptors. The extracted features are then classified using the support vector machine classifier to distinguish between healthy and infected chest X-ray images. The effectiveness of the proposed technique was evaluated using four distinct datasets, such as Japanese Society of Radiological Technology (JSRT), Montgomery, National Library of Medicine (NLM), and Shenzhen.

Results: Experimental results demonstrate promising outcomes, with accuracy rates of 94%, 95%, 95%, and 93% achieved for JSRT, Montgomery, NLM, and Shenzhen datasets, respectively. Comparative analysis against recent studies indicates superior performance of the proposed hybrid approach.

Conclusions: The presented hybrid approach within the AuSC framework showcases improved diagnostic accuracy for TB detection from diverse X-ray image datasets. Furthermore, this methodology holds promise for generalizing other diseases diagnosed through X-ray imaging. It can be adapted with computed tomography scans and magnetic resonance imaging images, extending its applicability in healthcare diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
期刊最新文献
A feasibility study on utilizing machine learning technology to reduce the costs of gastric cancer screening in Taizhou, China. Ageing well with tech: Exploring the determinants of e-healthcare services adoption in an emerging economy. Chinese colposcopists' attitudes toward the colposcopic artificial intelligence auxiliary diagnostic system (CAIADS): A nation-wide, multi-center survey. Digital leadership: Norwegian healthcare managers' attitudes towards using digital tools. Disease characteristics influence the privacy calculus to adopt electronic health records: A survey study in Germany.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1