Nicole Da Silva, G Harvey Anderson, Amira M Amr, Shirley Vien, Hrvoje Fabek
{"title":"比较乳制品和植物替代品对加拿大健康年轻人代谢反应的影响:一项随机交叉研究。","authors":"Nicole Da Silva, G Harvey Anderson, Amira M Amr, Shirley Vien, Hrvoje Fabek","doi":"10.1139/apnm-2024-0158","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-based food demand is rapidly increasing. However, the metabolic responses of plant proteins within their commercially available form remains unclear. Two randomized crossover experiments compared plant-based alternatives to dairy on postprandial glycemia, metabolic hormones, and appetite before and after a fixed size (12 kcal/kg body weight) pasta meal in sixteen healthy young adults (eight males and eight females). In experiment one, participants (22.8±2.3y) consumed one-serving of Greek yogurt (175g), cheddar cheese (30g), plant-based cheese (30g), or plant-based yogurt (175g). In experiment two, participants (22.3±2.4y) consumed one-serving (250 mL) of cow's milk, vanilla soy beverage or vanilla almond beverage, and (30 g) of cheddar cheese or plant-based cheese. Blood glucose, insulin, and appetite were measured at baseline, post-treatment, and following a fixed-size pasta meal (post-meal) within 15-30 min. In experiment two, C-peptide, GLP-1, and ghrelin were measured. Greek yogurt and cheddar cheese lowered post-meal blood glucose more than their plant-based alternatives (p <0.01) and post-treatment blood glucose was higher following almond beverage than cheddar cheese and plant-based cheese (p <0.01). In experiment 1, post-treatment insulin was higher after Greek yogurt than cheddar cheese and plant-based cheese and all treatments post-meal (p <0.02). Post-meal appetite was lower after plant-based yogurt than cheddar cheese and plant-based cheese (p <0.01). In experiment 2, post-treatment insulin was higher after almond beverage compared to all treatments (p <0.01) and post-meal GLP-1 was higher after milk than almond beverage (p =0.03). We conclude that the physiological functionality of plant-based alternatives as measured by blood glucose, insulin, C-peptide, and GLP-1 did not replicate the metabolic functions of dairy products.</p>","PeriodicalId":93878,"journal":{"name":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of the Effects of Dairy Products with their Plant-based Alternatives on Metabolic Responses in Healthy Young Canadian Adults: a randomized cross-over study.\",\"authors\":\"Nicole Da Silva, G Harvey Anderson, Amira M Amr, Shirley Vien, Hrvoje Fabek\",\"doi\":\"10.1139/apnm-2024-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-based food demand is rapidly increasing. However, the metabolic responses of plant proteins within their commercially available form remains unclear. Two randomized crossover experiments compared plant-based alternatives to dairy on postprandial glycemia, metabolic hormones, and appetite before and after a fixed size (12 kcal/kg body weight) pasta meal in sixteen healthy young adults (eight males and eight females). In experiment one, participants (22.8±2.3y) consumed one-serving of Greek yogurt (175g), cheddar cheese (30g), plant-based cheese (30g), or plant-based yogurt (175g). In experiment two, participants (22.3±2.4y) consumed one-serving (250 mL) of cow's milk, vanilla soy beverage or vanilla almond beverage, and (30 g) of cheddar cheese or plant-based cheese. Blood glucose, insulin, and appetite were measured at baseline, post-treatment, and following a fixed-size pasta meal (post-meal) within 15-30 min. In experiment two, C-peptide, GLP-1, and ghrelin were measured. Greek yogurt and cheddar cheese lowered post-meal blood glucose more than their plant-based alternatives (p <0.01) and post-treatment blood glucose was higher following almond beverage than cheddar cheese and plant-based cheese (p <0.01). In experiment 1, post-treatment insulin was higher after Greek yogurt than cheddar cheese and plant-based cheese and all treatments post-meal (p <0.02). Post-meal appetite was lower after plant-based yogurt than cheddar cheese and plant-based cheese (p <0.01). In experiment 2, post-treatment insulin was higher after almond beverage compared to all treatments (p <0.01) and post-meal GLP-1 was higher after milk than almond beverage (p =0.03). We conclude that the physiological functionality of plant-based alternatives as measured by blood glucose, insulin, C-peptide, and GLP-1 did not replicate the metabolic functions of dairy products.</p>\",\"PeriodicalId\":93878,\"journal\":{\"name\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/apnm-2024-0158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/apnm-2024-0158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison of the Effects of Dairy Products with their Plant-based Alternatives on Metabolic Responses in Healthy Young Canadian Adults: a randomized cross-over study.
Plant-based food demand is rapidly increasing. However, the metabolic responses of plant proteins within their commercially available form remains unclear. Two randomized crossover experiments compared plant-based alternatives to dairy on postprandial glycemia, metabolic hormones, and appetite before and after a fixed size (12 kcal/kg body weight) pasta meal in sixteen healthy young adults (eight males and eight females). In experiment one, participants (22.8±2.3y) consumed one-serving of Greek yogurt (175g), cheddar cheese (30g), plant-based cheese (30g), or plant-based yogurt (175g). In experiment two, participants (22.3±2.4y) consumed one-serving (250 mL) of cow's milk, vanilla soy beverage or vanilla almond beverage, and (30 g) of cheddar cheese or plant-based cheese. Blood glucose, insulin, and appetite were measured at baseline, post-treatment, and following a fixed-size pasta meal (post-meal) within 15-30 min. In experiment two, C-peptide, GLP-1, and ghrelin were measured. Greek yogurt and cheddar cheese lowered post-meal blood glucose more than their plant-based alternatives (p <0.01) and post-treatment blood glucose was higher following almond beverage than cheddar cheese and plant-based cheese (p <0.01). In experiment 1, post-treatment insulin was higher after Greek yogurt than cheddar cheese and plant-based cheese and all treatments post-meal (p <0.02). Post-meal appetite was lower after plant-based yogurt than cheddar cheese and plant-based cheese (p <0.01). In experiment 2, post-treatment insulin was higher after almond beverage compared to all treatments (p <0.01) and post-meal GLP-1 was higher after milk than almond beverage (p =0.03). We conclude that the physiological functionality of plant-based alternatives as measured by blood glucose, insulin, C-peptide, and GLP-1 did not replicate the metabolic functions of dairy products.