{"title":"带有 3d-5d 过渡金属核的银基核壳纳米团簇在氧还原反应中的第一性原理研究","authors":"","doi":"10.1016/j.ica.2024.122301","DOIUrl":null,"url":null,"abstract":"<div><p>The depletion of traditional fossil fuels, as well as the increase in global energy demand, is currently driving the need for sustainable energy solutions. The primary challenge in the practical application of hydrogen fuel cells is to reduce or replace the use of platinum material in the electrode catalysts. In this work, by using density functional theory (DFT) we investigate the oxygen reduction reaction of Ag-based core-shell nanoclusters with 12 different 3d-5d transition metal (TM) cores (groups 8–11). The stability is assessed by calculating the binding, excess and segregation energies, indicating that the most stable mixing is found in the noble metal-encapsulated structures, such as Pd@Ag, Pt@Ag, Rh@Ag and Ir@Ag particles. The reaction barrier for OH formation is found to be the limiting step with values ranging from 0.59 to 1.36 eV among the core-shell Ag-based nanoclusters, which are comparable with the energy barrier of the Pt(111) surface (0.97 eV). However, the correlation of the d-band center and activation barriers indicate that Ru@Ag, Rh@Ag, and Os@Ag mixings are the most suitable for the oxygen reduction reaction. These results indicate that small Ag-based core-shell nanoclusters with transition metal cores are active for the ORR application in alkaline media.</p></div>","PeriodicalId":13599,"journal":{"name":"Inorganica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First principles study for Ag-based core-shell nanoclusters with 3d-5d transition metal cores for the oxygen reduction reaction\",\"authors\":\"\",\"doi\":\"10.1016/j.ica.2024.122301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The depletion of traditional fossil fuels, as well as the increase in global energy demand, is currently driving the need for sustainable energy solutions. The primary challenge in the practical application of hydrogen fuel cells is to reduce or replace the use of platinum material in the electrode catalysts. In this work, by using density functional theory (DFT) we investigate the oxygen reduction reaction of Ag-based core-shell nanoclusters with 12 different 3d-5d transition metal (TM) cores (groups 8–11). The stability is assessed by calculating the binding, excess and segregation energies, indicating that the most stable mixing is found in the noble metal-encapsulated structures, such as Pd@Ag, Pt@Ag, Rh@Ag and Ir@Ag particles. The reaction barrier for OH formation is found to be the limiting step with values ranging from 0.59 to 1.36 eV among the core-shell Ag-based nanoclusters, which are comparable with the energy barrier of the Pt(111) surface (0.97 eV). However, the correlation of the d-band center and activation barriers indicate that Ru@Ag, Rh@Ag, and Os@Ag mixings are the most suitable for the oxygen reduction reaction. These results indicate that small Ag-based core-shell nanoclusters with transition metal cores are active for the ORR application in alkaline media.</p></div>\",\"PeriodicalId\":13599,\"journal\":{\"name\":\"Inorganica Chimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002016932400392X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002016932400392X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
First principles study for Ag-based core-shell nanoclusters with 3d-5d transition metal cores for the oxygen reduction reaction
The depletion of traditional fossil fuels, as well as the increase in global energy demand, is currently driving the need for sustainable energy solutions. The primary challenge in the practical application of hydrogen fuel cells is to reduce or replace the use of platinum material in the electrode catalysts. In this work, by using density functional theory (DFT) we investigate the oxygen reduction reaction of Ag-based core-shell nanoclusters with 12 different 3d-5d transition metal (TM) cores (groups 8–11). The stability is assessed by calculating the binding, excess and segregation energies, indicating that the most stable mixing is found in the noble metal-encapsulated structures, such as Pd@Ag, Pt@Ag, Rh@Ag and Ir@Ag particles. The reaction barrier for OH formation is found to be the limiting step with values ranging from 0.59 to 1.36 eV among the core-shell Ag-based nanoclusters, which are comparable with the energy barrier of the Pt(111) surface (0.97 eV). However, the correlation of the d-band center and activation barriers indicate that Ru@Ag, Rh@Ag, and Os@Ag mixings are the most suitable for the oxygen reduction reaction. These results indicate that small Ag-based core-shell nanoclusters with transition metal cores are active for the ORR application in alkaline media.
期刊介绍:
Inorganica Chimica Acta is an established international forum for all aspects of advanced Inorganic Chemistry. Original papers of high scientific level and interest are published in the form of Articles and Reviews.
Topics covered include:
• chemistry of the main group elements and the d- and f-block metals, including the synthesis, characterization and reactivity of coordination, organometallic, biomimetic, supramolecular coordination compounds, including associated computational studies;
• synthesis, physico-chemical properties, applications of molecule-based nano-scaled clusters and nanomaterials designed using the principles of coordination chemistry, as well as coordination polymers (CPs), metal-organic frameworks (MOFs), metal-organic polyhedra (MPOs);
• reaction mechanisms and physico-chemical investigations computational studies of metalloenzymes and their models;
• applications of inorganic compounds, metallodrugs and molecule-based materials.
Papers composed primarily of structural reports will typically not be considered for publication.