基于多层级聚合的图卷积网络,用于工业知识图嵌入,实现认知智能制造

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Journal of Manufacturing Systems Pub Date : 2024-08-14 DOI:10.1016/j.jmsy.2024.08.012
Bufan Liu , Chun-Hsien Chen , Zuoxu Wang
{"title":"基于多层级聚合的图卷积网络,用于工业知识图嵌入,实现认知智能制造","authors":"Bufan Liu ,&nbsp;Chun-Hsien Chen ,&nbsp;Zuoxu Wang","doi":"10.1016/j.jmsy.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development and widespread applications of cognitive computing technologies have led to a paradigm shift towards cognitive intelligent development in manufacturing, where knowledge plays an increasingly important role in enabling higher levels of cognition. Knowledge graph (KG) has emerged as one of the essential tools in cognitive intelligent manufacturing and its completion would significantly impact the quality of knowledge. To facilitate effective knowledge management, KG embedding has proven to be an effective approach for KG completion. However, existing models have deficiencies in achieving relation-specific transformations, differentiating the neighbor nodes, and exploiting the intermediate information generated during the KG embedding learning process, which is prone to limit model performance and hinder successful applications. To address these limitations, this paper proposes a new multi-hierarchical aggregation-based graph convolutional network (GCN), consisting of relation-aware, entity-aware, and across-block aggregation. A parallel relation and entity-aware aggregation (PREA) block is established to simultaneously perform relation-specific transformations and entity-differentiated learning. Additionally, an across-block aggregation is constructed to efficiently integrate extracted information from the intermediate stacked block. To demonstrate the effectiveness and superiority of the proposed approach, 3D printing KG is constructed, which is a representative knowledge-intensive industry linking to a variety of aspects like raw materials, adhesion, usages, etc. Extensive experiments are conducted based on the link prediction task. Illustrative examples are provided to reveal the practical implementation of the proposed method, along with technical details and insightful opinions, exhibiting its promising applications.</p></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"76 ","pages":"Pages 320-332"},"PeriodicalIF":12.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-hierarchical aggregation-based graph convolutional network for industrial knowledge graph embedding towards cognitive intelligent manufacturing\",\"authors\":\"Bufan Liu ,&nbsp;Chun-Hsien Chen ,&nbsp;Zuoxu Wang\",\"doi\":\"10.1016/j.jmsy.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid development and widespread applications of cognitive computing technologies have led to a paradigm shift towards cognitive intelligent development in manufacturing, where knowledge plays an increasingly important role in enabling higher levels of cognition. Knowledge graph (KG) has emerged as one of the essential tools in cognitive intelligent manufacturing and its completion would significantly impact the quality of knowledge. To facilitate effective knowledge management, KG embedding has proven to be an effective approach for KG completion. However, existing models have deficiencies in achieving relation-specific transformations, differentiating the neighbor nodes, and exploiting the intermediate information generated during the KG embedding learning process, which is prone to limit model performance and hinder successful applications. To address these limitations, this paper proposes a new multi-hierarchical aggregation-based graph convolutional network (GCN), consisting of relation-aware, entity-aware, and across-block aggregation. A parallel relation and entity-aware aggregation (PREA) block is established to simultaneously perform relation-specific transformations and entity-differentiated learning. Additionally, an across-block aggregation is constructed to efficiently integrate extracted information from the intermediate stacked block. To demonstrate the effectiveness and superiority of the proposed approach, 3D printing KG is constructed, which is a representative knowledge-intensive industry linking to a variety of aspects like raw materials, adhesion, usages, etc. Extensive experiments are conducted based on the link prediction task. Illustrative examples are provided to reveal the practical implementation of the proposed method, along with technical details and insightful opinions, exhibiting its promising applications.</p></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"76 \",\"pages\":\"Pages 320-332\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524001766\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524001766","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

认知计算技术的快速发展和广泛应用导致了制造业向认知智能发展的范式转变,知识在实现更高层次的认知方面发挥着越来越重要的作用。知识图谱(KG)已成为认知智能制造的重要工具之一,它的完善将极大地影响知识的质量。为了促进有效的知识管理,KG 嵌入已被证明是完成 KG 的有效方法。然而,现有模型在实现特定关系转换、区分相邻节点、利用 KG 嵌入学习过程中产生的中间信息等方面存在不足,容易限制模型性能,阻碍成功应用。针对这些局限性,本文提出了一种新的基于多层聚合的图卷积网络(GCN),由关系感知、实体感知和跨块聚合组成。本文建立了一个并行的关系和实体感知聚合(PREA)块,以同时执行特定关系转换和实体差异学习。此外,还构建了跨块聚合,以有效整合从中间堆叠块中提取的信息。为了证明所提方法的有效性和优越性,我们构建了一个具有代表性的知识密集型行业--3D 打印 KG,该行业涉及原材料、附着力、用途等多个方面。在链接预测任务的基础上进行了广泛的实验。通过举例说明,揭示了所提方法的实际应用,并提供了技术细节和独到见解,展示了其广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-hierarchical aggregation-based graph convolutional network for industrial knowledge graph embedding towards cognitive intelligent manufacturing

The rapid development and widespread applications of cognitive computing technologies have led to a paradigm shift towards cognitive intelligent development in manufacturing, where knowledge plays an increasingly important role in enabling higher levels of cognition. Knowledge graph (KG) has emerged as one of the essential tools in cognitive intelligent manufacturing and its completion would significantly impact the quality of knowledge. To facilitate effective knowledge management, KG embedding has proven to be an effective approach for KG completion. However, existing models have deficiencies in achieving relation-specific transformations, differentiating the neighbor nodes, and exploiting the intermediate information generated during the KG embedding learning process, which is prone to limit model performance and hinder successful applications. To address these limitations, this paper proposes a new multi-hierarchical aggregation-based graph convolutional network (GCN), consisting of relation-aware, entity-aware, and across-block aggregation. A parallel relation and entity-aware aggregation (PREA) block is established to simultaneously perform relation-specific transformations and entity-differentiated learning. Additionally, an across-block aggregation is constructed to efficiently integrate extracted information from the intermediate stacked block. To demonstrate the effectiveness and superiority of the proposed approach, 3D printing KG is constructed, which is a representative knowledge-intensive industry linking to a variety of aspects like raw materials, adhesion, usages, etc. Extensive experiments are conducted based on the link prediction task. Illustrative examples are provided to reveal the practical implementation of the proposed method, along with technical details and insightful opinions, exhibiting its promising applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
期刊最新文献
Material removal rate optimization with bayesian optimized differential evolution based on deep learning in robotic polishing Leveraging AI for energy-efficient manufacturing systems: Review and future prospectives Investigation of assistance systems in assembly in the context of digitalization: A systematic literature review Machining parameter optimization for a batch milling system using multi-task deep reinforcement learning A dynamic artificial bee colony for fuzzy distributed energy-efficient hybrid flow shop scheduling with batch processing machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1