{"title":"实现直观有效的微操作:带有三维电热微型夹具的可穿戴外骨骼集成宏观到微观远程操纵系统","authors":"Guoning Si , Hanli Zhang , Zhuo Zhang , Xuping Zhang","doi":"10.1016/j.robot.2024.104776","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a novel teleoperation system for dexterous micromanipulation with a 3D three-fingered electrothermal microgripper. A lightweight wearable exoskeleton hand is designed and employed as the primary device, integrating rotational potentiometers as angle sensors, which are embedded in a closed-loop kinematic chain for detecting flexion/extension and adduction/abduction angles of motion. The measured angles are subsequently translated into exoskeleton hand-fingertip positions utilized as the primary inputs. A 3D electrothermal microgripper based tele-micro manipulation system is realized. The displacement of the exoskeleton fingertips is harnessed to govern the actions of the microgripper via an effective position incremental control method. Furthermore, the system's capabilities are exemplified through intricate micromanipulations performed on soft zebrafish embryos. The micromanipulations encompass gripping and rotational maneuvers. The outcomes of empirical experimentation clearly demonstrate the suitability of the macro-micro teleoperation system, which incorporates an exoskeleton hand for controlling a microgripper in 3D micromanipulation. The system improves operator comfort and maneuvering efficiency. Even for untrained users, the tasks can be accomplished with ease in an intuitive and effective way.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"181 ","pages":"Article 104776"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092188902400160X/pdfft?md5=7748383aaf2d8f90a389e88f96c06f9d&pid=1-s2.0-S092188902400160X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enabling intuitive and effective micromanipulation: A wearable exoskeleton-integrated macro-to-micro teleoperation system with a 3D electrothermal microgripper\",\"authors\":\"Guoning Si , Hanli Zhang , Zhuo Zhang , Xuping Zhang\",\"doi\":\"10.1016/j.robot.2024.104776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we present a novel teleoperation system for dexterous micromanipulation with a 3D three-fingered electrothermal microgripper. A lightweight wearable exoskeleton hand is designed and employed as the primary device, integrating rotational potentiometers as angle sensors, which are embedded in a closed-loop kinematic chain for detecting flexion/extension and adduction/abduction angles of motion. The measured angles are subsequently translated into exoskeleton hand-fingertip positions utilized as the primary inputs. A 3D electrothermal microgripper based tele-micro manipulation system is realized. The displacement of the exoskeleton fingertips is harnessed to govern the actions of the microgripper via an effective position incremental control method. Furthermore, the system's capabilities are exemplified through intricate micromanipulations performed on soft zebrafish embryos. The micromanipulations encompass gripping and rotational maneuvers. The outcomes of empirical experimentation clearly demonstrate the suitability of the macro-micro teleoperation system, which incorporates an exoskeleton hand for controlling a microgripper in 3D micromanipulation. The system improves operator comfort and maneuvering efficiency. Even for untrained users, the tasks can be accomplished with ease in an intuitive and effective way.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"181 \",\"pages\":\"Article 104776\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S092188902400160X/pdfft?md5=7748383aaf2d8f90a389e88f96c06f9d&pid=1-s2.0-S092188902400160X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092188902400160X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092188902400160X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Enabling intuitive and effective micromanipulation: A wearable exoskeleton-integrated macro-to-micro teleoperation system with a 3D electrothermal microgripper
In this article, we present a novel teleoperation system for dexterous micromanipulation with a 3D three-fingered electrothermal microgripper. A lightweight wearable exoskeleton hand is designed and employed as the primary device, integrating rotational potentiometers as angle sensors, which are embedded in a closed-loop kinematic chain for detecting flexion/extension and adduction/abduction angles of motion. The measured angles are subsequently translated into exoskeleton hand-fingertip positions utilized as the primary inputs. A 3D electrothermal microgripper based tele-micro manipulation system is realized. The displacement of the exoskeleton fingertips is harnessed to govern the actions of the microgripper via an effective position incremental control method. Furthermore, the system's capabilities are exemplified through intricate micromanipulations performed on soft zebrafish embryos. The micromanipulations encompass gripping and rotational maneuvers. The outcomes of empirical experimentation clearly demonstrate the suitability of the macro-micro teleoperation system, which incorporates an exoskeleton hand for controlling a microgripper in 3D micromanipulation. The system improves operator comfort and maneuvering efficiency. Even for untrained users, the tasks can be accomplished with ease in an intuitive and effective way.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.