物理化学特性对冲击水面的可吸入煤矿粉尘临界下沉和附着的影响

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-08-02 DOI:10.1016/j.ces.2024.120588
{"title":"物理化学特性对冲击水面的可吸入煤矿粉尘临界下沉和附着的影响","authors":"","doi":"10.1016/j.ces.2024.120588","DOIUrl":null,"url":null,"abstract":"<div><p>Respirable coal mine dust (RCMD) inhalation is identified as the main cause of the resurgence of coal worker’s pneumoconiosis (CWP) since the mid-1990s. At present, the predominant dust control technology is the water spray system. However, in practice, the capture efficiency of RCMD by this technology is relatively low. To understand the capturing mechanism and develop improvement strategies, this research is focused on the surface chemistry study of RCMD and its impact on a water surface using a dynamic model. Proximate analysis, chemical, and mineral composition of a run-of-mine (ROM) coal sample from Appalachian region were analyzed using a proximate analyzer, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and X-ray Diffraction (XRD), respectively. Contact angles were measured by capillary rise test using the Washburn equation. Based on the dynamic model, the effects of particle size, density, contact angle, and surface tension on the critical sinking were investigated. It was pointed out in this work that reducing surface tension, in turn, decreases contact angle, which has been neglected in the literature. Regime maps for different minerals were created and showed that organic matter has the highest critical velocity due to its low density and high contact angle. Reducing water surface tension to the critical solid surface tension of coal around 30 mN/m could maximize the attachment efficiency. Scaling laws, constructed by force balance, led to the criteria of critical sinking: <span><math><mrow><msub><mi>U</mi><mtext>cr</mtext></msub><mspace></mspace><mo>∼</mo><mspace></mspace><msqrt><mrow><mfrac><mrow><mn>6</mn><mrow><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mi>θ</mi></mrow></mfenced></mrow></mrow><mrow><mfenced><mrow><mn>2</mn><mi>D</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></mrow></msqrt><msqrt><mrow><mfrac><msub><mi>γ</mi><mi>lv</mi></msub><mrow><msub><mi>ρ</mi><mi>l</mi></msub><mi>R</mi></mrow></mfrac></mrow></msqrt></mrow></math></span>, i.e., <span><math><mrow><msub><mtext>We</mtext><mtext>cr</mtext></msub><mspace></mspace><mo>∼</mo><mspace></mspace><mfrac><mrow><mn>12</mn><mrow><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mi>θ</mi></mrow></mfenced></mrow></mrow><mrow><mfenced><mrow><mn>2</mn><mi>D</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></mrow></math></span>. A semi-empirical formula for critical velocity was obtained by fitting the simulation data, <span><math><mrow><msub><mi>U</mi><mrow><mi>cr</mi></mrow></msub><mo>=</mo><mn>1.09</mn><msqrt><mrow><mfrac><mrow><mn>6</mn><mrow><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mi>θ</mi></mrow></mfenced></mrow></mrow><mrow><mfenced><mrow><mn>2</mn><mi>D</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></mrow></msqrt><msqrt><mrow><mfrac><msub><mi>γ</mi><mrow><mi>lv</mi></mrow></msub><mrow><msub><mi>ρ</mi><mi>l</mi></msub><mi>R</mi></mrow></mfrac></mrow></msqrt></mrow></math></span>. Attachment efficiency was defined and formulated as <span><math><mrow><msub><mi>P</mi><mi>a</mi></msub><mo>=</mo><mfrac><msubsup><mi>U</mi><mrow><mn>0</mn></mrow><mn>2</mn></msubsup><msubsup><mi>U</mi><mrow><mi>cr</mi></mrow><mn>2</mn></msubsup></mfrac><mo>=</mo><mfrac><mrow><mi>W</mi><msub><mi>e</mi><mn>0</mn></msub></mrow><mrow><mi>W</mi><msub><mi>e</mi><mrow><mi>cr</mi></mrow></msub></mrow></mfrac></mrow></math></span>, establishing relationships between attachment efficiency and the physicochemical properties of RCMD and water droplets.</p></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of physicochemical properties on critical sinking and attachment of respirable coal mine dust impacting on a water surface\",\"authors\":\"\",\"doi\":\"10.1016/j.ces.2024.120588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Respirable coal mine dust (RCMD) inhalation is identified as the main cause of the resurgence of coal worker’s pneumoconiosis (CWP) since the mid-1990s. At present, the predominant dust control technology is the water spray system. However, in practice, the capture efficiency of RCMD by this technology is relatively low. To understand the capturing mechanism and develop improvement strategies, this research is focused on the surface chemistry study of RCMD and its impact on a water surface using a dynamic model. Proximate analysis, chemical, and mineral composition of a run-of-mine (ROM) coal sample from Appalachian region were analyzed using a proximate analyzer, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and X-ray Diffraction (XRD), respectively. Contact angles were measured by capillary rise test using the Washburn equation. Based on the dynamic model, the effects of particle size, density, contact angle, and surface tension on the critical sinking were investigated. It was pointed out in this work that reducing surface tension, in turn, decreases contact angle, which has been neglected in the literature. Regime maps for different minerals were created and showed that organic matter has the highest critical velocity due to its low density and high contact angle. Reducing water surface tension to the critical solid surface tension of coal around 30 mN/m could maximize the attachment efficiency. Scaling laws, constructed by force balance, led to the criteria of critical sinking: <span><math><mrow><msub><mi>U</mi><mtext>cr</mtext></msub><mspace></mspace><mo>∼</mo><mspace></mspace><msqrt><mrow><mfrac><mrow><mn>6</mn><mrow><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mi>θ</mi></mrow></mfenced></mrow></mrow><mrow><mfenced><mrow><mn>2</mn><mi>D</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></mrow></msqrt><msqrt><mrow><mfrac><msub><mi>γ</mi><mi>lv</mi></msub><mrow><msub><mi>ρ</mi><mi>l</mi></msub><mi>R</mi></mrow></mfrac></mrow></msqrt></mrow></math></span>, i.e., <span><math><mrow><msub><mtext>We</mtext><mtext>cr</mtext></msub><mspace></mspace><mo>∼</mo><mspace></mspace><mfrac><mrow><mn>12</mn><mrow><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mi>θ</mi></mrow></mfenced></mrow></mrow><mrow><mfenced><mrow><mn>2</mn><mi>D</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></mrow></math></span>. A semi-empirical formula for critical velocity was obtained by fitting the simulation data, <span><math><mrow><msub><mi>U</mi><mrow><mi>cr</mi></mrow></msub><mo>=</mo><mn>1.09</mn><msqrt><mrow><mfrac><mrow><mn>6</mn><mrow><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mi>θ</mi></mrow></mfenced></mrow></mrow><mrow><mfenced><mrow><mn>2</mn><mi>D</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></mrow></msqrt><msqrt><mrow><mfrac><msub><mi>γ</mi><mrow><mi>lv</mi></mrow></msub><mrow><msub><mi>ρ</mi><mi>l</mi></msub><mi>R</mi></mrow></mfrac></mrow></msqrt></mrow></math></span>. Attachment efficiency was defined and formulated as <span><math><mrow><msub><mi>P</mi><mi>a</mi></msub><mo>=</mo><mfrac><msubsup><mi>U</mi><mrow><mn>0</mn></mrow><mn>2</mn></msubsup><msubsup><mi>U</mi><mrow><mi>cr</mi></mrow><mn>2</mn></msubsup></mfrac><mo>=</mo><mfrac><mrow><mi>W</mi><msub><mi>e</mi><mn>0</mn></msub></mrow><mrow><mi>W</mi><msub><mi>e</mi><mrow><mi>cr</mi></mrow></msub></mrow></mfrac></mrow></math></span>, establishing relationships between attachment efficiency and the physicochemical properties of RCMD and water droplets.</p></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250924008881\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924008881","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

自 20 世纪 90 年代中期以来,吸入可吸入煤矿粉尘(RCMD)被认为是煤矿工人尘肺病(CWP)复发的主要原因。目前,最主要的粉尘控制技术是喷水系统。但实际上,这种技术对 RCMD 的捕获效率相对较低。为了解捕集机理并制定改进策略,本研究利用动态模型重点研究 RCMD 的表面化学性质及其对水面的影响。使用近似分析仪、电感耦合等离子体质谱仪(ICP-MS)和 X 射线衍射仪(XRD)分别分析了阿巴拉契亚地区矿井采出煤(ROM)样本的近似分析、化学成分和矿物成分。毛细管上升试验采用沃什伯恩方程测量接触角。根据动态模型,研究了粒度、密度、接触角和表面张力对临界沉降的影响。这项工作指出,降低表面张力反过来会减小接触角,而这一点在文献中一直被忽视。绘制了不同矿物质的状态图,结果表明,有机物由于密度小、接触角大,临界速度最高。将水的表面张力降低到煤的临界固体表面张力 30 mN/m 左右可以最大限度地提高附着效率。通过力平衡构建的缩放定律得出了临界下沉的标准:Ucr∼61-cosθ2D+1γlvρlR,即 Wecr∼121-cosθ2D+1。通过拟合模拟数据,得到了临界速度的半经验公式:Ucr=1.0961-cosθ2D+1γlvρlR。附着效率的定义和公式为 Pa=U02Ucr2=We0Wecr,从而建立了附着效率与 RCMD 和水滴的物理化学特性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of physicochemical properties on critical sinking and attachment of respirable coal mine dust impacting on a water surface

Respirable coal mine dust (RCMD) inhalation is identified as the main cause of the resurgence of coal worker’s pneumoconiosis (CWP) since the mid-1990s. At present, the predominant dust control technology is the water spray system. However, in practice, the capture efficiency of RCMD by this technology is relatively low. To understand the capturing mechanism and develop improvement strategies, this research is focused on the surface chemistry study of RCMD and its impact on a water surface using a dynamic model. Proximate analysis, chemical, and mineral composition of a run-of-mine (ROM) coal sample from Appalachian region were analyzed using a proximate analyzer, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and X-ray Diffraction (XRD), respectively. Contact angles were measured by capillary rise test using the Washburn equation. Based on the dynamic model, the effects of particle size, density, contact angle, and surface tension on the critical sinking were investigated. It was pointed out in this work that reducing surface tension, in turn, decreases contact angle, which has been neglected in the literature. Regime maps for different minerals were created and showed that organic matter has the highest critical velocity due to its low density and high contact angle. Reducing water surface tension to the critical solid surface tension of coal around 30 mN/m could maximize the attachment efficiency. Scaling laws, constructed by force balance, led to the criteria of critical sinking: Ucr61-cosθ2D+1γlvρlR, i.e., Wecr121-cosθ2D+1. A semi-empirical formula for critical velocity was obtained by fitting the simulation data, Ucr=1.0961-cosθ2D+1γlvρlR. Attachment efficiency was defined and formulated as Pa=U02Ucr2=We0Wecr, establishing relationships between attachment efficiency and the physicochemical properties of RCMD and water droplets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Defection-stripping and balanced carrier extraction strategy enables efficient and ultra-low hysteresis of inverted inorganic perovskite solar cells Engineering the accessibility of active sites in mixed 1 T-2H MoS2 nanoflowers via NaClO etching for deep hydrodesulfurization of dibenzothiophene Promotion effect of Zr on the dendritic layered Ni/CeO2 catalyst for methane dry reforming CoGa-Layered double hydroxides modified tin-doped hematite photoanode for efficient solar water splitting An automatic merging method for large kinetic mechanisms: Application to a surrogate fuel combustion model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1