Julio Carballido-Gamio, Elisa A Marques, Sigurdur Sigurdsson, Kristin Siggeirsdottir, Alexandria Jensen, Gunnar Sigurdsson, Thor Aspelund, Vilmundur Gudnason, Thomas F Lang, Tamara B Harris
{"title":"与年龄相关的骨质变化的男女时空差异显示,老年妇女在与髋部骨折事件相关的股骨区域的骨质退化速度更快。","authors":"Julio Carballido-Gamio, Elisa A Marques, Sigurdur Sigurdsson, Kristin Siggeirsdottir, Alexandria Jensen, Gunnar Sigurdsson, Thor Aspelund, Vilmundur Gudnason, Thomas F Lang, Tamara B Harris","doi":"10.1093/jbmr/zjae132","DOIUrl":null,"url":null,"abstract":"<p><p>A better understanding of how age-related bone loss affects the fracture-prone regions of the proximal femur could lead to more informed fracture-prevention strategies. Therefore, the aim of this work was to assess the spatio-temporal distribution of bone deterioration in older men and women with aging. A subset of 305 men (74.87 ± 4.76 years; mean ± SD) and 371 age-matched women (74.84 ± 4.71 years) with no history of fracture was randomly selected from the Age, Gene/Environment Susceptibility-Reykjavik study. Quantitative computed tomography (QCT) scans of the left proximal femur obtained at baseline and at 5.2 ± 0.4 years follow-up were processed to assess local changes in volumetric bone mineral density (vBMD), cortical bone thickness (Ct.Th), and internal bone structure using voxel-based morphometry (VBM), surface-based statistical parametric mapping (surf-SPM), and tensor-based morphometry (TBM). Local parametric changes within each sex and sex differences in these changes were statistically assessed using linear mixed effects models allowing for baseline and time-varying covariates, yielding Student's t-test and p-value statistical maps of the proximal femur. The statistical maps indicated regions with significant parametric changes in each sex and with significant different parametric changes between older men and older women with aging. Older women manifested significantly larger losses in vBMD, (Ct.Th), and structure than older men, and they did so in regions where deficiency in these parameters has been associated with incident hip fracture. Using longitudinal QCT scans of the proximal femur and Computational Anatomy, we provided new insights into the higher fracture rates of the proximal femur in older women compared with men of similar age providing new information on the pathophysiology of osteoporosis.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1443-1453"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523530/pdf/","citationCount":"0","resultStr":"{\"title\":\"Male-female spatio-temporal differences of age-related bone changes show faster bone deterioration in older women at femoral regions associated with incident hip fracture.\",\"authors\":\"Julio Carballido-Gamio, Elisa A Marques, Sigurdur Sigurdsson, Kristin Siggeirsdottir, Alexandria Jensen, Gunnar Sigurdsson, Thor Aspelund, Vilmundur Gudnason, Thomas F Lang, Tamara B Harris\",\"doi\":\"10.1093/jbmr/zjae132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A better understanding of how age-related bone loss affects the fracture-prone regions of the proximal femur could lead to more informed fracture-prevention strategies. Therefore, the aim of this work was to assess the spatio-temporal distribution of bone deterioration in older men and women with aging. A subset of 305 men (74.87 ± 4.76 years; mean ± SD) and 371 age-matched women (74.84 ± 4.71 years) with no history of fracture was randomly selected from the Age, Gene/Environment Susceptibility-Reykjavik study. Quantitative computed tomography (QCT) scans of the left proximal femur obtained at baseline and at 5.2 ± 0.4 years follow-up were processed to assess local changes in volumetric bone mineral density (vBMD), cortical bone thickness (Ct.Th), and internal bone structure using voxel-based morphometry (VBM), surface-based statistical parametric mapping (surf-SPM), and tensor-based morphometry (TBM). Local parametric changes within each sex and sex differences in these changes were statistically assessed using linear mixed effects models allowing for baseline and time-varying covariates, yielding Student's t-test and p-value statistical maps of the proximal femur. The statistical maps indicated regions with significant parametric changes in each sex and with significant different parametric changes between older men and older women with aging. Older women manifested significantly larger losses in vBMD, (Ct.Th), and structure than older men, and they did so in regions where deficiency in these parameters has been associated with incident hip fracture. Using longitudinal QCT scans of the proximal femur and Computational Anatomy, we provided new insights into the higher fracture rates of the proximal femur in older women compared with men of similar age providing new information on the pathophysiology of osteoporosis.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"1443-1453\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae132\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae132","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Male-female spatio-temporal differences of age-related bone changes show faster bone deterioration in older women at femoral regions associated with incident hip fracture.
A better understanding of how age-related bone loss affects the fracture-prone regions of the proximal femur could lead to more informed fracture-prevention strategies. Therefore, the aim of this work was to assess the spatio-temporal distribution of bone deterioration in older men and women with aging. A subset of 305 men (74.87 ± 4.76 years; mean ± SD) and 371 age-matched women (74.84 ± 4.71 years) with no history of fracture was randomly selected from the Age, Gene/Environment Susceptibility-Reykjavik study. Quantitative computed tomography (QCT) scans of the left proximal femur obtained at baseline and at 5.2 ± 0.4 years follow-up were processed to assess local changes in volumetric bone mineral density (vBMD), cortical bone thickness (Ct.Th), and internal bone structure using voxel-based morphometry (VBM), surface-based statistical parametric mapping (surf-SPM), and tensor-based morphometry (TBM). Local parametric changes within each sex and sex differences in these changes were statistically assessed using linear mixed effects models allowing for baseline and time-varying covariates, yielding Student's t-test and p-value statistical maps of the proximal femur. The statistical maps indicated regions with significant parametric changes in each sex and with significant different parametric changes between older men and older women with aging. Older women manifested significantly larger losses in vBMD, (Ct.Th), and structure than older men, and they did so in regions where deficiency in these parameters has been associated with incident hip fracture. Using longitudinal QCT scans of the proximal femur and Computational Anatomy, we provided new insights into the higher fracture rates of the proximal femur in older women compared with men of similar age providing new information on the pathophysiology of osteoporosis.
期刊介绍:
The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.