{"title":"c-Myc-XRCC2-FOS 轴促进了 NSCLC 的增殖和对多柔比星的耐药性","authors":"","doi":"10.1016/j.biopha.2024.117315","DOIUrl":null,"url":null,"abstract":"<div><p>Lung cancer represents one of the most prevalent malignant neoplasms, commanding an alarming incidence and mortality rate globally. Non-small cell lung cancer (NSCLC), constituting approximately 80 %-90 % of all lung cancer cases, is the predominant pathological manifestation of this disease, with a disconcerting 5-year survival rate scarcely reaching 10 %. Extensive prior investigations have elucidated that the aberrant expression of X-ray repair cross-complementing gene 2 (XRCC2), a critical meiotic gene intricately involved in the DNA damage repair process, is intimately associated with tumorigenesis. Nevertheless, the precise roles and underlying mechanistic pathways of XRCC2 in NSCLC remain largely elusive. In the present study, we discerned an overexpression of XRCC2 within NSCLC patient tissues, particularly in high-grade samples, when juxtaposed with normal tissues. Targeted knockdown of XRCC2 notably impeded the proliferation of NSCLC both in vitro and in vivo. Comprehensive RNA sequencing and flow rescue assays unveiled that XRCC2 augments the proliferation of NSCLC cells through the down-regulation of FOS expression. Moreover, the c-Myc gene was definitively identified as an XRCC2 transcriptional factor by means of chromatin immunoprecipitation (ChIP) and luciferase reporter assays, whereby pharmacological attenuation of c-Myc expression, in conjunction with Doxorubicin, synergistically curtailed NSCLC cell growth both in vitro and in vivo. Collectively, our findings proffer critical insights into the novel c-Myc-XRCC2-FOS axis in promoting both proliferation and resistance to Doxorubicin in NSCLC cells, thereby extending a promising avenue for potential new diagnostic strategies and therapeutic interventions in NSCLC.</p></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0753332224011995/pdfft?md5=0312ff5d26c309d86adde0d6f54d660e&pid=1-s2.0-S0753332224011995-main.pdf","citationCount":"0","resultStr":"{\"title\":\"c-Myc-XRCC2-FOS axis promotes the proliferation and the resistance to Doxorubicin of NSCLC\",\"authors\":\"\",\"doi\":\"10.1016/j.biopha.2024.117315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lung cancer represents one of the most prevalent malignant neoplasms, commanding an alarming incidence and mortality rate globally. Non-small cell lung cancer (NSCLC), constituting approximately 80 %-90 % of all lung cancer cases, is the predominant pathological manifestation of this disease, with a disconcerting 5-year survival rate scarcely reaching 10 %. Extensive prior investigations have elucidated that the aberrant expression of X-ray repair cross-complementing gene 2 (XRCC2), a critical meiotic gene intricately involved in the DNA damage repair process, is intimately associated with tumorigenesis. Nevertheless, the precise roles and underlying mechanistic pathways of XRCC2 in NSCLC remain largely elusive. In the present study, we discerned an overexpression of XRCC2 within NSCLC patient tissues, particularly in high-grade samples, when juxtaposed with normal tissues. Targeted knockdown of XRCC2 notably impeded the proliferation of NSCLC both in vitro and in vivo. Comprehensive RNA sequencing and flow rescue assays unveiled that XRCC2 augments the proliferation of NSCLC cells through the down-regulation of FOS expression. Moreover, the c-Myc gene was definitively identified as an XRCC2 transcriptional factor by means of chromatin immunoprecipitation (ChIP) and luciferase reporter assays, whereby pharmacological attenuation of c-Myc expression, in conjunction with Doxorubicin, synergistically curtailed NSCLC cell growth both in vitro and in vivo. Collectively, our findings proffer critical insights into the novel c-Myc-XRCC2-FOS axis in promoting both proliferation and resistance to Doxorubicin in NSCLC cells, thereby extending a promising avenue for potential new diagnostic strategies and therapeutic interventions in NSCLC.</p></div>\",\"PeriodicalId\":8966,\"journal\":{\"name\":\"Biomedicine & Pharmacotherapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0753332224011995/pdfft?md5=0312ff5d26c309d86adde0d6f54d660e&pid=1-s2.0-S0753332224011995-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & Pharmacotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0753332224011995\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332224011995","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
c-Myc-XRCC2-FOS axis promotes the proliferation and the resistance to Doxorubicin of NSCLC
Lung cancer represents one of the most prevalent malignant neoplasms, commanding an alarming incidence and mortality rate globally. Non-small cell lung cancer (NSCLC), constituting approximately 80 %-90 % of all lung cancer cases, is the predominant pathological manifestation of this disease, with a disconcerting 5-year survival rate scarcely reaching 10 %. Extensive prior investigations have elucidated that the aberrant expression of X-ray repair cross-complementing gene 2 (XRCC2), a critical meiotic gene intricately involved in the DNA damage repair process, is intimately associated with tumorigenesis. Nevertheless, the precise roles and underlying mechanistic pathways of XRCC2 in NSCLC remain largely elusive. In the present study, we discerned an overexpression of XRCC2 within NSCLC patient tissues, particularly in high-grade samples, when juxtaposed with normal tissues. Targeted knockdown of XRCC2 notably impeded the proliferation of NSCLC both in vitro and in vivo. Comprehensive RNA sequencing and flow rescue assays unveiled that XRCC2 augments the proliferation of NSCLC cells through the down-regulation of FOS expression. Moreover, the c-Myc gene was definitively identified as an XRCC2 transcriptional factor by means of chromatin immunoprecipitation (ChIP) and luciferase reporter assays, whereby pharmacological attenuation of c-Myc expression, in conjunction with Doxorubicin, synergistically curtailed NSCLC cell growth both in vitro and in vivo. Collectively, our findings proffer critical insights into the novel c-Myc-XRCC2-FOS axis in promoting both proliferation and resistance to Doxorubicin in NSCLC cells, thereby extending a promising avenue for potential new diagnostic strategies and therapeutic interventions in NSCLC.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.