DynaSeg:结合特征相似性和空间连续性的无监督图像分割深度动态融合方法

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2024-08-10 DOI:10.1016/j.imavis.2024.105206
Boujemaa Guermazi , Riadh Ksantini , Naimul Khan
{"title":"DynaSeg:结合特征相似性和空间连续性的无监督图像分割深度动态融合方法","authors":"Boujemaa Guermazi ,&nbsp;Riadh Ksantini ,&nbsp;Naimul Khan","doi":"10.1016/j.imavis.2024.105206","DOIUrl":null,"url":null,"abstract":"<div><p>Our work tackles the fundamental challenge of image segmentation in computer vision, which is crucial for diverse applications. While supervised methods demonstrate proficiency, their reliance on extensive pixel-level annotations limits scalability. We introduce DynaSeg, an innovative unsupervised image segmentation approach that overcomes the challenge of balancing feature similarity and spatial continuity without relying on extensive hyperparameter tuning. Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that automates parameter tuning, adapts flexibly to image characteristics, and facilitates easy integration with other segmentation networks. By incorporating a Silhouette Score Phase, DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one. DynaSeg uses CNN-based and pre-trained ResNet feature extraction, making it computationally efficient and more straightforward than other complex models. Experimental results showcase state-of-the-art performance, achieving a 12.2% and 14.12% mIOU improvement over current unsupervised segmentation approaches on COCO-All and COCO-Stuff datasets, respectively. We provide qualitative and quantitative results on five benchmark datasets, demonstrating the efficacy of the proposed approach. Code available at \\url{<span><span>https://github.com/RyersonMultimediaLab/DynaSeg</span><svg><path></path></svg></span>}</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"150 ","pages":"Article 105206"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0262885624003111/pdfft?md5=da5c387758372711e4b28912d6fd15cc&pid=1-s2.0-S0262885624003111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DynaSeg: A deep dynamic fusion method for unsupervised image segmentation incorporating feature similarity and spatial continuity\",\"authors\":\"Boujemaa Guermazi ,&nbsp;Riadh Ksantini ,&nbsp;Naimul Khan\",\"doi\":\"10.1016/j.imavis.2024.105206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our work tackles the fundamental challenge of image segmentation in computer vision, which is crucial for diverse applications. While supervised methods demonstrate proficiency, their reliance on extensive pixel-level annotations limits scalability. We introduce DynaSeg, an innovative unsupervised image segmentation approach that overcomes the challenge of balancing feature similarity and spatial continuity without relying on extensive hyperparameter tuning. Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that automates parameter tuning, adapts flexibly to image characteristics, and facilitates easy integration with other segmentation networks. By incorporating a Silhouette Score Phase, DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one. DynaSeg uses CNN-based and pre-trained ResNet feature extraction, making it computationally efficient and more straightforward than other complex models. Experimental results showcase state-of-the-art performance, achieving a 12.2% and 14.12% mIOU improvement over current unsupervised segmentation approaches on COCO-All and COCO-Stuff datasets, respectively. We provide qualitative and quantitative results on five benchmark datasets, demonstrating the efficacy of the proposed approach. Code available at \\\\url{<span><span>https://github.com/RyersonMultimediaLab/DynaSeg</span><svg><path></path></svg></span>}</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"150 \",\"pages\":\"Article 105206\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003111/pdfft?md5=da5c387758372711e4b28912d6fd15cc&pid=1-s2.0-S0262885624003111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003111\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003111","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们的工作是应对计算机视觉中图像分割这一基本挑战,这对各种应用至关重要。虽然有监督的方法表现出了熟练的能力,但它们对大量像素级注释的依赖限制了可扩展性。我们介绍的 DynaSeg 是一种创新的无监督图像分割方法,它克服了平衡特征相似性和空间连续性的难题,而无需依赖大量的超参数调整。与传统方法不同,DynaSeg 采用动态加权方案,可自动调整参数,灵活适应图像特征,并便于与其他分割网络集成。DynaSeg 结合了轮廓分数阶段(Silhouette Score Phase),从而避免了未充分分割的失败,因为在这种情况下,预测簇的数量可能会趋近于一个。DynaSeg 使用基于 CNN 的预训练 ResNet 特征提取,因此计算效率高,比其他复杂模型更简单。实验结果展示了最先进的性能,在 COCO-All 和 COCO-Stuff 数据集上分别比当前的无监督分割方法提高了 12.2% 和 14.12% mIOU。我们提供了五个基准数据集的定性和定量结果,证明了所提方法的有效性。代码见 \url{https://github.com/RyersonMultimediaLab/DynaSeg}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DynaSeg: A deep dynamic fusion method for unsupervised image segmentation incorporating feature similarity and spatial continuity

Our work tackles the fundamental challenge of image segmentation in computer vision, which is crucial for diverse applications. While supervised methods demonstrate proficiency, their reliance on extensive pixel-level annotations limits scalability. We introduce DynaSeg, an innovative unsupervised image segmentation approach that overcomes the challenge of balancing feature similarity and spatial continuity without relying on extensive hyperparameter tuning. Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that automates parameter tuning, adapts flexibly to image characteristics, and facilitates easy integration with other segmentation networks. By incorporating a Silhouette Score Phase, DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one. DynaSeg uses CNN-based and pre-trained ResNet feature extraction, making it computationally efficient and more straightforward than other complex models. Experimental results showcase state-of-the-art performance, achieving a 12.2% and 14.12% mIOU improvement over current unsupervised segmentation approaches on COCO-All and COCO-Stuff datasets, respectively. We provide qualitative and quantitative results on five benchmark datasets, demonstrating the efficacy of the proposed approach. Code available at \url{https://github.com/RyersonMultimediaLab/DynaSeg}

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
CF-SOLT: Real-time and accurate traffic accident detection using correlation filter-based tracking TransWild: Enhancing 3D interacting hands recovery in the wild with IoU-guided Transformer Machine learning applications in breast cancer prediction using mammography Channel and Spatial Enhancement Network for human parsing Non-negative subspace feature representation for few-shot learning in medical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1