{"title":"DynaSeg:结合特征相似性和空间连续性的无监督图像分割深度动态融合方法","authors":"Boujemaa Guermazi , Riadh Ksantini , Naimul Khan","doi":"10.1016/j.imavis.2024.105206","DOIUrl":null,"url":null,"abstract":"<div><p>Our work tackles the fundamental challenge of image segmentation in computer vision, which is crucial for diverse applications. While supervised methods demonstrate proficiency, their reliance on extensive pixel-level annotations limits scalability. We introduce DynaSeg, an innovative unsupervised image segmentation approach that overcomes the challenge of balancing feature similarity and spatial continuity without relying on extensive hyperparameter tuning. Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that automates parameter tuning, adapts flexibly to image characteristics, and facilitates easy integration with other segmentation networks. By incorporating a Silhouette Score Phase, DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one. DynaSeg uses CNN-based and pre-trained ResNet feature extraction, making it computationally efficient and more straightforward than other complex models. Experimental results showcase state-of-the-art performance, achieving a 12.2% and 14.12% mIOU improvement over current unsupervised segmentation approaches on COCO-All and COCO-Stuff datasets, respectively. We provide qualitative and quantitative results on five benchmark datasets, demonstrating the efficacy of the proposed approach. Code available at \\url{<span><span>https://github.com/RyersonMultimediaLab/DynaSeg</span><svg><path></path></svg></span>}</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"150 ","pages":"Article 105206"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0262885624003111/pdfft?md5=da5c387758372711e4b28912d6fd15cc&pid=1-s2.0-S0262885624003111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DynaSeg: A deep dynamic fusion method for unsupervised image segmentation incorporating feature similarity and spatial continuity\",\"authors\":\"Boujemaa Guermazi , Riadh Ksantini , Naimul Khan\",\"doi\":\"10.1016/j.imavis.2024.105206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our work tackles the fundamental challenge of image segmentation in computer vision, which is crucial for diverse applications. While supervised methods demonstrate proficiency, their reliance on extensive pixel-level annotations limits scalability. We introduce DynaSeg, an innovative unsupervised image segmentation approach that overcomes the challenge of balancing feature similarity and spatial continuity without relying on extensive hyperparameter tuning. Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that automates parameter tuning, adapts flexibly to image characteristics, and facilitates easy integration with other segmentation networks. By incorporating a Silhouette Score Phase, DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one. DynaSeg uses CNN-based and pre-trained ResNet feature extraction, making it computationally efficient and more straightforward than other complex models. Experimental results showcase state-of-the-art performance, achieving a 12.2% and 14.12% mIOU improvement over current unsupervised segmentation approaches on COCO-All and COCO-Stuff datasets, respectively. We provide qualitative and quantitative results on five benchmark datasets, demonstrating the efficacy of the proposed approach. Code available at \\\\url{<span><span>https://github.com/RyersonMultimediaLab/DynaSeg</span><svg><path></path></svg></span>}</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"150 \",\"pages\":\"Article 105206\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003111/pdfft?md5=da5c387758372711e4b28912d6fd15cc&pid=1-s2.0-S0262885624003111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003111\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003111","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DynaSeg: A deep dynamic fusion method for unsupervised image segmentation incorporating feature similarity and spatial continuity
Our work tackles the fundamental challenge of image segmentation in computer vision, which is crucial for diverse applications. While supervised methods demonstrate proficiency, their reliance on extensive pixel-level annotations limits scalability. We introduce DynaSeg, an innovative unsupervised image segmentation approach that overcomes the challenge of balancing feature similarity and spatial continuity without relying on extensive hyperparameter tuning. Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that automates parameter tuning, adapts flexibly to image characteristics, and facilitates easy integration with other segmentation networks. By incorporating a Silhouette Score Phase, DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one. DynaSeg uses CNN-based and pre-trained ResNet feature extraction, making it computationally efficient and more straightforward than other complex models. Experimental results showcase state-of-the-art performance, achieving a 12.2% and 14.12% mIOU improvement over current unsupervised segmentation approaches on COCO-All and COCO-Stuff datasets, respectively. We provide qualitative and quantitative results on five benchmark datasets, demonstrating the efficacy of the proposed approach. Code available at \url{https://github.com/RyersonMultimediaLab/DynaSeg}
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.