{"title":"使用 Collatz 和 Fresnelet 变换的鲁棒医学图像零水印算法","authors":"Pavani Meesala, Moumita Roy, Dalton Meitei Thounaojam","doi":"10.1016/j.jisa.2024.103855","DOIUrl":null,"url":null,"abstract":"<div><p>Zero-watermarking in medical images is an emerging field that focuses on calculating the invisible data (key) using medical imagery to ensure data integrity and authenticity without compromising diagnostic accuracy. This paper introduces a robust zero-watermarking technique leveraging the Collatz and Fresnelet Transforms. The Forward Collatz Transform (FCT) is initially applied to create a secure and encrypted embedding pattern for medical images. Subsequently, the Fresnelet Transform (FT) is employed, offering superior localization and frequency selectivity. From the fresnelet values, we extract two strongest Oriented FAST and Rotated BRIEF (ORB) points to enhance watermark robustness, resulting in a 64-bit perceptual image hash. Our approach adopts a dual-layer security strategy by combining FCT and Cyclic-Shift-Transformation (CST) methods, significantly fortifying the protection of watermark image data. The watermark can be efficiently extracted using the Inverse Collatz Transform (ICT). A comprehensive performance analysis evaluates our system under single, double, and multiple attacks on medical images. Our experiments clearly show that our system outperforms existing methods in medical image watermarking, demonstrating its resilience against various manipulations. This approach can significantly improve data security and reliability in medical imaging applications.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"85 ","pages":"Article 103855"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust medical image zero-watermarking algorithm using Collatz and Fresnelet Transforms\",\"authors\":\"Pavani Meesala, Moumita Roy, Dalton Meitei Thounaojam\",\"doi\":\"10.1016/j.jisa.2024.103855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zero-watermarking in medical images is an emerging field that focuses on calculating the invisible data (key) using medical imagery to ensure data integrity and authenticity without compromising diagnostic accuracy. This paper introduces a robust zero-watermarking technique leveraging the Collatz and Fresnelet Transforms. The Forward Collatz Transform (FCT) is initially applied to create a secure and encrypted embedding pattern for medical images. Subsequently, the Fresnelet Transform (FT) is employed, offering superior localization and frequency selectivity. From the fresnelet values, we extract two strongest Oriented FAST and Rotated BRIEF (ORB) points to enhance watermark robustness, resulting in a 64-bit perceptual image hash. Our approach adopts a dual-layer security strategy by combining FCT and Cyclic-Shift-Transformation (CST) methods, significantly fortifying the protection of watermark image data. The watermark can be efficiently extracted using the Inverse Collatz Transform (ICT). A comprehensive performance analysis evaluates our system under single, double, and multiple attacks on medical images. Our experiments clearly show that our system outperforms existing methods in medical image watermarking, demonstrating its resilience against various manipulations. This approach can significantly improve data security and reliability in medical imaging applications.</p></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"85 \",\"pages\":\"Article 103855\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212624001571\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001571","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A robust medical image zero-watermarking algorithm using Collatz and Fresnelet Transforms
Zero-watermarking in medical images is an emerging field that focuses on calculating the invisible data (key) using medical imagery to ensure data integrity and authenticity without compromising diagnostic accuracy. This paper introduces a robust zero-watermarking technique leveraging the Collatz and Fresnelet Transforms. The Forward Collatz Transform (FCT) is initially applied to create a secure and encrypted embedding pattern for medical images. Subsequently, the Fresnelet Transform (FT) is employed, offering superior localization and frequency selectivity. From the fresnelet values, we extract two strongest Oriented FAST and Rotated BRIEF (ORB) points to enhance watermark robustness, resulting in a 64-bit perceptual image hash. Our approach adopts a dual-layer security strategy by combining FCT and Cyclic-Shift-Transformation (CST) methods, significantly fortifying the protection of watermark image data. The watermark can be efficiently extracted using the Inverse Collatz Transform (ICT). A comprehensive performance analysis evaluates our system under single, double, and multiple attacks on medical images. Our experiments clearly show that our system outperforms existing methods in medical image watermarking, demonstrating its resilience against various manipulations. This approach can significantly improve data security and reliability in medical imaging applications.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.