反应时间任务中阿尔法和贝塔振荡形状变化的年龄差异

IF 3.7 3区 医学 Q2 GERIATRICS & GERONTOLOGY Neurobiology of Aging Pub Date : 2024-08-13 DOI:10.1016/j.neurobiolaging.2024.08.001
George M. Opie , James M. Hughes , Rohan Puri
{"title":"反应时间任务中阿尔法和贝塔振荡形状变化的年龄差异","authors":"George M. Opie ,&nbsp;James M. Hughes ,&nbsp;Rohan Puri","doi":"10.1016/j.neurobiolaging.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>While the <em>shape</em> of cortical oscillations is increasingly recognised to be physiologically and functionally informative, its relevance to the aging motor system has not been established. We therefore examined the shape of alpha and beta band oscillations recorded at rest, as well as during performance of simple and go/no-go reaction time tasks, in 33 young (23.3 ± 2.9 years, 27 females) and 27 older (60.0 ± 5.2 years, 23 females) adults. The shape of individual oscillatory cycles was characterised using a recently developed pipeline involving empirical mode decomposition, before being decomposed into waveform motifs using principal component analysis. This revealed four principal components that were uniquely influenced by task and/or age. These described specific dimensions of shape and tended to be modulated during the reaction phase of each task. Our results suggest that although oscillation shape is task-dependent, the nature of this effect is altered by advancing age, possibly reflecting alterations in cortical activity. These outcomes demonstrate the utility of this approach for understanding the neurophysiological effects of ageing.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"142 ","pages":"Pages 52-64"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197458024001325/pdfft?md5=70b87d1e5a245772f9470cc43494761b&pid=1-s2.0-S0197458024001325-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Age-related differences in how the shape of alpha and beta oscillations change during reaction time tasks\",\"authors\":\"George M. Opie ,&nbsp;James M. Hughes ,&nbsp;Rohan Puri\",\"doi\":\"10.1016/j.neurobiolaging.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While the <em>shape</em> of cortical oscillations is increasingly recognised to be physiologically and functionally informative, its relevance to the aging motor system has not been established. We therefore examined the shape of alpha and beta band oscillations recorded at rest, as well as during performance of simple and go/no-go reaction time tasks, in 33 young (23.3 ± 2.9 years, 27 females) and 27 older (60.0 ± 5.2 years, 23 females) adults. The shape of individual oscillatory cycles was characterised using a recently developed pipeline involving empirical mode decomposition, before being decomposed into waveform motifs using principal component analysis. This revealed four principal components that were uniquely influenced by task and/or age. These described specific dimensions of shape and tended to be modulated during the reaction phase of each task. Our results suggest that although oscillation shape is task-dependent, the nature of this effect is altered by advancing age, possibly reflecting alterations in cortical activity. These outcomes demonstrate the utility of this approach for understanding the neurophysiological effects of ageing.</p></div>\",\"PeriodicalId\":19110,\"journal\":{\"name\":\"Neurobiology of Aging\",\"volume\":\"142 \",\"pages\":\"Pages 52-64\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0197458024001325/pdfft?md5=70b87d1e5a245772f9470cc43494761b&pid=1-s2.0-S0197458024001325-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Aging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197458024001325\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458024001325","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管人们越来越认识到皮层振荡的形状在生理和功能上具有信息价值,但其与老化运动系统的相关性尚未得到证实。因此,我们研究了 33 名年轻人(23.3 ± 2.9 岁,27 名女性)和 27 名老年人(60.0 ± 5.2 岁,23 名女性)在静息状态下以及在完成简单和去/不去反应时间任务时记录到的α和β波段振荡的形状。在使用主成分分析法将单个振荡周期分解为波形图案之前,先使用最近开发的经验模式分解流水线对振荡周期的形状进行了表征。结果显示,有四个主成分受到任务和/或年龄的独特影响。这些主成分描述了形状的特定维度,并倾向于在每个任务的反应阶段进行调节。我们的结果表明,虽然振荡形状与任务有关,但这种影响的性质会随着年龄的增长而改变,这可能反映了大脑皮层活动的变化。这些结果证明了这种方法在理解老化的神经生理学影响方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Age-related differences in how the shape of alpha and beta oscillations change during reaction time tasks

While the shape of cortical oscillations is increasingly recognised to be physiologically and functionally informative, its relevance to the aging motor system has not been established. We therefore examined the shape of alpha and beta band oscillations recorded at rest, as well as during performance of simple and go/no-go reaction time tasks, in 33 young (23.3 ± 2.9 years, 27 females) and 27 older (60.0 ± 5.2 years, 23 females) adults. The shape of individual oscillatory cycles was characterised using a recently developed pipeline involving empirical mode decomposition, before being decomposed into waveform motifs using principal component analysis. This revealed four principal components that were uniquely influenced by task and/or age. These described specific dimensions of shape and tended to be modulated during the reaction phase of each task. Our results suggest that although oscillation shape is task-dependent, the nature of this effect is altered by advancing age, possibly reflecting alterations in cortical activity. These outcomes demonstrate the utility of this approach for understanding the neurophysiological effects of ageing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Aging
Neurobiology of Aging 医学-老年医学
CiteScore
8.40
自引率
2.40%
发文量
225
审稿时长
67 days
期刊介绍: Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.
期刊最新文献
Cerebral white matter hyperintensity volumes: Normative age- and sex-specific values from 15 population-based cohorts comprising 14,876 individuals Contents Editorial Advisory Board Cross-sectional and longitudinal relationships among blood-brain barrier disruption, Alzheimer's disease biomarkers, and cognition in cognitively normal older adults Effects of age and dietary methionine restriction on cognitive and behavioural phenotypes in the rTg4510 mouse model of frontotemporal dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1