{"title":"区间删失多向嵌套生存数据的贝叶斯协方差结构建模","authors":"Stef Baas , Jean-Paul Fox , Richard J. Boucherie","doi":"10.1016/j.jmva.2024.105359","DOIUrl":null,"url":null,"abstract":"<div><p>A Bayesian covariance structure model (BCSM) is proposed for interval-censored multi-way nested survival data. This flexible modeling framework generalizes mixed effects survival models by allowing positive and negative associations among clustered observations. Conjugate shifted-inverse gamma priors are proposed for the covariance parameters, implying inverse gamma priors for the eigenvalues of the covariance matrix, which ensures a positive definite covariance matrix under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs. This requires sampling latent variables from their marginal full conditional distributions, which are derived through a recursive formula. This makes the estimation procedure suitable for interval-censored data with large cluster sizes. For unbalanced nested designs, a novel (balancing) data augmentation procedure is introduced to improve the efficiency of the Gibbs sampler. The Gibbs sampling procedure is validated in two simulation studies. The linear transformation BCSM (LT-BCSM) was applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represented unobserved heterogeneity in treatment effects and were examined to detect differential treatment effects. A comparison was made with inference results under a random effects linear transformation model. It was concluded that the LT-BCSM led to inferences with higher posterior credibility, a more profound way of quantifying evidence for risk equivalence of the three treatments, and it was more robust to prior specifications.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000666/pdfft?md5=ba8eccdffa71a651c495cfe20091f2f0&pid=1-s2.0-S0047259X24000666-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian covariance structure modeling of interval-censored multi-way nested survival data\",\"authors\":\"Stef Baas , Jean-Paul Fox , Richard J. Boucherie\",\"doi\":\"10.1016/j.jmva.2024.105359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Bayesian covariance structure model (BCSM) is proposed for interval-censored multi-way nested survival data. This flexible modeling framework generalizes mixed effects survival models by allowing positive and negative associations among clustered observations. Conjugate shifted-inverse gamma priors are proposed for the covariance parameters, implying inverse gamma priors for the eigenvalues of the covariance matrix, which ensures a positive definite covariance matrix under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs. This requires sampling latent variables from their marginal full conditional distributions, which are derived through a recursive formula. This makes the estimation procedure suitable for interval-censored data with large cluster sizes. For unbalanced nested designs, a novel (balancing) data augmentation procedure is introduced to improve the efficiency of the Gibbs sampler. The Gibbs sampling procedure is validated in two simulation studies. The linear transformation BCSM (LT-BCSM) was applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represented unobserved heterogeneity in treatment effects and were examined to detect differential treatment effects. A comparison was made with inference results under a random effects linear transformation model. It was concluded that the LT-BCSM led to inferences with higher posterior credibility, a more profound way of quantifying evidence for risk equivalence of the three treatments, and it was more robust to prior specifications.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000666/pdfft?md5=ba8eccdffa71a651c495cfe20091f2f0&pid=1-s2.0-S0047259X24000666-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000666\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000666","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bayesian covariance structure modeling of interval-censored multi-way nested survival data
A Bayesian covariance structure model (BCSM) is proposed for interval-censored multi-way nested survival data. This flexible modeling framework generalizes mixed effects survival models by allowing positive and negative associations among clustered observations. Conjugate shifted-inverse gamma priors are proposed for the covariance parameters, implying inverse gamma priors for the eigenvalues of the covariance matrix, which ensures a positive definite covariance matrix under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs. This requires sampling latent variables from their marginal full conditional distributions, which are derived through a recursive formula. This makes the estimation procedure suitable for interval-censored data with large cluster sizes. For unbalanced nested designs, a novel (balancing) data augmentation procedure is introduced to improve the efficiency of the Gibbs sampler. The Gibbs sampling procedure is validated in two simulation studies. The linear transformation BCSM (LT-BCSM) was applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represented unobserved heterogeneity in treatment effects and were examined to detect differential treatment effects. A comparison was made with inference results under a random effects linear transformation model. It was concluded that the LT-BCSM led to inferences with higher posterior credibility, a more profound way of quantifying evidence for risk equivalence of the three treatments, and it was more robust to prior specifications.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.