通过多层图处理对可穿戴传感器信号进行身体运动分割

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2024-03-30 DOI:10.1109/OJSP.2024.3407662
Qinwen Deng;Songyang Zhang;Zhi Ding
{"title":"通过多层图处理对可穿戴传感器信号进行身体运动分割","authors":"Qinwen Deng;Songyang Zhang;Zhi Ding","doi":"10.1109/OJSP.2024.3407662","DOIUrl":null,"url":null,"abstract":"Human body motion segmentation plays a major role in many applications, ranging from computer vision to robotics. Among a variety of algorithms, graph-based approaches have demonstrated exciting potential in motion analysis owing to their power to capture the underlying correlations among joints. However, most existing works focus on simpler single-layer geometric structures, whereas multi-layer spatial-temporal graph structure can provide more informative results. To provide an interpretable analysis on multilayer spatial-temporal structures, we revisit the emerging field of multilayer graph signal processing (M-GSP), and propose novel approaches based on M-GSP to human motion segmentation. Specifically, we model the spatial-temporal relationships via multilayer graphs (MLG) and introduce M-GSP spectrum analysis for feature extraction. We present two different M-GSP based algorithms for unsupervised segmentation in the MLG spectrum and vertex domains, respectively. Our experimental results demonstrate the robustness and effectiveness of our proposed methods.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"934-947"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542374","citationCount":"0","resultStr":"{\"title\":\"Body Motion Segmentation via Multilayer Graph Processing for Wearable Sensor Signals\",\"authors\":\"Qinwen Deng;Songyang Zhang;Zhi Ding\",\"doi\":\"10.1109/OJSP.2024.3407662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human body motion segmentation plays a major role in many applications, ranging from computer vision to robotics. Among a variety of algorithms, graph-based approaches have demonstrated exciting potential in motion analysis owing to their power to capture the underlying correlations among joints. However, most existing works focus on simpler single-layer geometric structures, whereas multi-layer spatial-temporal graph structure can provide more informative results. To provide an interpretable analysis on multilayer spatial-temporal structures, we revisit the emerging field of multilayer graph signal processing (M-GSP), and propose novel approaches based on M-GSP to human motion segmentation. Specifically, we model the spatial-temporal relationships via multilayer graphs (MLG) and introduce M-GSP spectrum analysis for feature extraction. We present two different M-GSP based algorithms for unsupervised segmentation in the MLG spectrum and vertex domains, respectively. Our experimental results demonstrate the robustness and effectiveness of our proposed methods.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"934-947\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542374\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542374/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10542374/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

从计算机视觉到机器人技术,人体运动分割在许多应用中都发挥着重要作用。在各种算法中,基于图形的方法因其捕捉关节间潜在关联的能力而在运动分析中展现出令人兴奋的潜力。然而,现有的大多数研究都集中在较为简单的单层几何结构上,而多层时空图结构则能提供更多信息。为了提供可解释的多层时空结构分析,我们重新审视了多层图信号处理(M-GSP)这一新兴领域,并提出了基于 M-GSP 的人体运动分割新方法。具体来说,我们通过多层图(MLG)对时空关系进行建模,并引入 M-GSP 频谱分析进行特征提取。我们提出了两种不同的基于 M-GSP 的算法,分别用于 MLG 频谱和顶点域的无监督分割。实验结果证明了我们提出的方法的稳健性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Body Motion Segmentation via Multilayer Graph Processing for Wearable Sensor Signals
Human body motion segmentation plays a major role in many applications, ranging from computer vision to robotics. Among a variety of algorithms, graph-based approaches have demonstrated exciting potential in motion analysis owing to their power to capture the underlying correlations among joints. However, most existing works focus on simpler single-layer geometric structures, whereas multi-layer spatial-temporal graph structure can provide more informative results. To provide an interpretable analysis on multilayer spatial-temporal structures, we revisit the emerging field of multilayer graph signal processing (M-GSP), and propose novel approaches based on M-GSP to human motion segmentation. Specifically, we model the spatial-temporal relationships via multilayer graphs (MLG) and introduce M-GSP spectrum analysis for feature extraction. We present two different M-GSP based algorithms for unsupervised segmentation in the MLG spectrum and vertex domains, respectively. Our experimental results demonstrate the robustness and effectiveness of our proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
Robust Estimation of the Covariance Matrix From Data With Outliers Dynamic Sensor Placement Based on Sampling Theory for Graph Signals Adversarial Training for Jamming-Robust Channel Estimation in OFDM Systems Track Coalescence and Repulsion in Multitarget Tracking: An Analysis of MHT, JPDA, and Belief Propagation Methods Impact of Varying Distance-Based Fingerprint Similarity Metrics on Affinity Propagation Clustering Performance in Received Signal Strength-Based Fingerprint Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1