Veronica Viola, Antonio D'Angelo, Anna Maria Piccirillo, Michelina Catauro
{"title":"采用溶胶-凝胶路线制备的硅/聚合物/天然药物材料:释放和抗菌活性研究","authors":"Veronica Viola, Antonio D'Angelo, Anna Maria Piccirillo, Michelina Catauro","doi":"10.1002/masy.202300251","DOIUrl":null,"url":null,"abstract":"<p>This study aims to develop a new class of versatile silica-based materials for medical applications, synthesized via the sol–gel method. Different molecules are incorporated into the silica matrix to improve its biological properties and to use these materials as better-performing implants. Polyethylene glycol (PEG) is added to silica-based materials to improve biocompatibility, increase hydrophilicity, and enhance cellular adhesion and growth. The effect of loading the silica/PEG matrix with chlorogenic acid (CGA), a natural compound present in different types of plants, is investigated to understand how the material is affected. The interactions among different components in the hybrid materials are studied by Fourier-transform infrared (FTIR) spectroscopy. Furthermore, the materials are encapsulated in 2% w/v of alginate to evaluate the different releases of CGA, using UV-Vis Spectrophotometer. Finally, antimicrobial assessment against <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i> of the several hybrids is observed by measuring the diameter of the zone of inhibition.</p>","PeriodicalId":18107,"journal":{"name":"Macromolecular Symposia","volume":"413 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Si/Polymer/Natural Drug Materials Prepared by Sol–Gel Route: Study of Release and Antibacterial Activity\",\"authors\":\"Veronica Viola, Antonio D'Angelo, Anna Maria Piccirillo, Michelina Catauro\",\"doi\":\"10.1002/masy.202300251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to develop a new class of versatile silica-based materials for medical applications, synthesized via the sol–gel method. Different molecules are incorporated into the silica matrix to improve its biological properties and to use these materials as better-performing implants. Polyethylene glycol (PEG) is added to silica-based materials to improve biocompatibility, increase hydrophilicity, and enhance cellular adhesion and growth. The effect of loading the silica/PEG matrix with chlorogenic acid (CGA), a natural compound present in different types of plants, is investigated to understand how the material is affected. The interactions among different components in the hybrid materials are studied by Fourier-transform infrared (FTIR) spectroscopy. Furthermore, the materials are encapsulated in 2% w/v of alginate to evaluate the different releases of CGA, using UV-Vis Spectrophotometer. Finally, antimicrobial assessment against <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i> of the several hybrids is observed by measuring the diameter of the zone of inhibition.</p>\",\"PeriodicalId\":18107,\"journal\":{\"name\":\"Macromolecular Symposia\",\"volume\":\"413 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/masy.202300251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/masy.202300251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Si/Polymer/Natural Drug Materials Prepared by Sol–Gel Route: Study of Release and Antibacterial Activity
This study aims to develop a new class of versatile silica-based materials for medical applications, synthesized via the sol–gel method. Different molecules are incorporated into the silica matrix to improve its biological properties and to use these materials as better-performing implants. Polyethylene glycol (PEG) is added to silica-based materials to improve biocompatibility, increase hydrophilicity, and enhance cellular adhesion and growth. The effect of loading the silica/PEG matrix with chlorogenic acid (CGA), a natural compound present in different types of plants, is investigated to understand how the material is affected. The interactions among different components in the hybrid materials are studied by Fourier-transform infrared (FTIR) spectroscopy. Furthermore, the materials are encapsulated in 2% w/v of alginate to evaluate the different releases of CGA, using UV-Vis Spectrophotometer. Finally, antimicrobial assessment against Escherichia coli and Pseudomonas aeruginosa of the several hybrids is observed by measuring the diameter of the zone of inhibition.
期刊介绍:
Macromolecular Symposia presents state-of-the-art research articles in the field of macromolecular chemistry and physics. All submitted contributions are peer-reviewed to ensure a high quality of published manuscripts. Accepted articles will be typeset and published as a hardcover edition together with online publication at Wiley InterScience, thereby guaranteeing an immediate international dissemination.