人脑各区域的等位基因特异性转录因子结合提供了对 eQTL 的机理认识

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Genome research Pub Date : 2024-08-16 DOI:10.1101/gr.278601.123
Ashlyn G Anderson, Belle A Moyers, Jacob M Loupe, Ivan Rodriguez-Nunez, Stephanie A Felker, James M.J. Lawlor, William E Bunney, Blynn G Bunney, Preston M Cartagena, Adolfo Sequeira, Stanley Watson, Huda Akil, Eric M Mendenhall, Gregory M Cooper, Richard M. Myers
{"title":"人脑各区域的等位基因特异性转录因子结合提供了对 eQTL 的机理认识","authors":"Ashlyn G Anderson, Belle A Moyers, Jacob M Loupe, Ivan Rodriguez-Nunez, Stephanie A Felker, James M.J. Lawlor, William E Bunney, Blynn G Bunney, Preston M Cartagena, Adolfo Sequeira, Stanley Watson, Huda Akil, Eric M Mendenhall, Gregory M Cooper, Richard M. Myers","doi":"10.1101/gr.278601.123","DOIUrl":null,"url":null,"abstract":"Transcription Factors (TFs) regulate gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Since TF occupancy is driven in part by recognition of DNA sequence, genetic variation can influence TF-DNA associations and gene regulation. To identify variants that impact TF binding in human brain tissues, we assessed allele specific binding (ASB) at heterozygous variants for 94 TFs in 9 brain regions from two donors. Leveraging graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signals between alleles at heterozygous variants within each brain region and identified thousands of variants exhibiting ASB for at least one TF. ASB reproducibility was measured by comparisons between independent experiments both within and between donors. We found that rarer alleles in the general population more frequently led to reduced TF binding, whereas common variation had an equal likelihood of increasing or decreasing binding. Motif analysis revealed TF-specific effects, with ASB variants for certain TFs displaying a greater incidence of motif alterations, as well as enrichments for variants under purifying selection. Notably, neuron-specific <em>cis</em>-regulatory elements (cCREs) showed depletion for ASB variants. We identified 2,670 ASB variants with prior evidence of allele-specific gene expression in the brain from GTEx data and observed increasing eQTL effect direction concordance as ASB significance increases. These results provide a valuable and unique resource for mechanistic analysis of <em>cis</em>-regulatory variation in human brain tissue.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"38 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allele specific transcription factor binding across human brain regions offers mechanistic insight into eQTLs\",\"authors\":\"Ashlyn G Anderson, Belle A Moyers, Jacob M Loupe, Ivan Rodriguez-Nunez, Stephanie A Felker, James M.J. Lawlor, William E Bunney, Blynn G Bunney, Preston M Cartagena, Adolfo Sequeira, Stanley Watson, Huda Akil, Eric M Mendenhall, Gregory M Cooper, Richard M. Myers\",\"doi\":\"10.1101/gr.278601.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcription Factors (TFs) regulate gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Since TF occupancy is driven in part by recognition of DNA sequence, genetic variation can influence TF-DNA associations and gene regulation. To identify variants that impact TF binding in human brain tissues, we assessed allele specific binding (ASB) at heterozygous variants for 94 TFs in 9 brain regions from two donors. Leveraging graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signals between alleles at heterozygous variants within each brain region and identified thousands of variants exhibiting ASB for at least one TF. ASB reproducibility was measured by comparisons between independent experiments both within and between donors. We found that rarer alleles in the general population more frequently led to reduced TF binding, whereas common variation had an equal likelihood of increasing or decreasing binding. Motif analysis revealed TF-specific effects, with ASB variants for certain TFs displaying a greater incidence of motif alterations, as well as enrichments for variants under purifying selection. Notably, neuron-specific <em>cis</em>-regulatory elements (cCREs) showed depletion for ASB variants. We identified 2,670 ASB variants with prior evidence of allele-specific gene expression in the brain from GTEx data and observed increasing eQTL effect direction concordance as ASB significance increases. These results provide a valuable and unique resource for mechanistic analysis of <em>cis</em>-regulatory variation in human brain tissue.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.278601.123\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.278601.123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转录因子(TF)通过促进或破坏特定基因组位点转录启动机制的形成来调控基因表达。由于 TF 的占据部分是由 DNA 序列识别驱动的,因此遗传变异会影响 TF-DNA 关联和基因调控。为了确定影响人类脑组织中TF结合的变异,我们评估了两个供体9个脑区94个TF杂合变异的等位基因特异性结合(ASB)。利用分阶段基因组序列数据构建的图谱基因组,我们比较了每个脑区杂合变体等位基因之间的 ChIP-seq 信号,并确定了数千个至少对一种 TF 具有 ASB 的变体。ASB 的可重复性通过供体内部和供体之间独立实验的比较来衡量。我们发现,一般人群中较罕见的等位基因更经常导致 TF 结合力降低,而常见变异增加或减少结合力的可能性相同。基因组分析显示了TF的特异性效应,某些TF的ASB变体显示出更高的基因组改变发生率,以及纯化选择下变体的富集。值得注意的是,神经元特异性顺式调节元件(cCRE)显示出 ASB 变体的耗竭。我们从 GTEx 数据中发现了 2,670 个等位基因特异性基因在大脑中表达的 ASB 变异,并观察到随着 ASB 重要性的增加,eQTL 效应方向的一致性也在增加。这些结果为人类脑组织顺式调节变异的机理分析提供了宝贵而独特的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Allele specific transcription factor binding across human brain regions offers mechanistic insight into eQTLs
Transcription Factors (TFs) regulate gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Since TF occupancy is driven in part by recognition of DNA sequence, genetic variation can influence TF-DNA associations and gene regulation. To identify variants that impact TF binding in human brain tissues, we assessed allele specific binding (ASB) at heterozygous variants for 94 TFs in 9 brain regions from two donors. Leveraging graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signals between alleles at heterozygous variants within each brain region and identified thousands of variants exhibiting ASB for at least one TF. ASB reproducibility was measured by comparisons between independent experiments both within and between donors. We found that rarer alleles in the general population more frequently led to reduced TF binding, whereas common variation had an equal likelihood of increasing or decreasing binding. Motif analysis revealed TF-specific effects, with ASB variants for certain TFs displaying a greater incidence of motif alterations, as well as enrichments for variants under purifying selection. Notably, neuron-specific cis-regulatory elements (cCREs) showed depletion for ASB variants. We identified 2,670 ASB variants with prior evidence of allele-specific gene expression in the brain from GTEx data and observed increasing eQTL effect direction concordance as ASB significance increases. These results provide a valuable and unique resource for mechanistic analysis of cis-regulatory variation in human brain tissue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
期刊最新文献
Global identification of mammalian host and nested gene pairs reveal tissue-specific transcriptional interplay Convergent relaxation of molecular constraint in herbivores reveals the changing role of liver and kidney functions across mammalian diets KAS-ATAC reveals the genome-wide single-stranded accessible chromatin landscape of the human genome Advancements in prospective single-cell lineage barcoding and their applications in research The chromatin landscape of the histone-possessing Bacteriovorax bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1