Bradley S. Heit, Alex Chu, Alyssa McRay, Janet E. Richmond, Charles J. Heckman, John Larson
{"title":"干扰谷氨酸反转运系统 xc - 使缺氧后的海马长期潜能得以发挥。","authors":"Bradley S. Heit, Alex Chu, Alyssa McRay, Janet E. Richmond, Charles J. Heckman, John Larson","doi":"10.1113/EP092045","DOIUrl":null,"url":null,"abstract":"<p>Our group previously showed that genetic or pharmacological inhibition of the cystine/glutamate antiporter, system x<sub>c</sub><sup>−</sup>, mitigates excitotoxicity after anoxia by increasing latency to anoxic depolarization, thus attenuating the ischaemic core. Hypoxia, however, which prevails in the ischaemic penumbra, is a condition where neurotransmission is altered, but excitotoxicity is not triggered. The present study employed mild hypoxia to further probe ischaemia-induced changes in neuronal responsiveness from wild-type and xCT KO (xCT<sup>−/−</sup>) mice. Synaptic transmission was monitored in hippocampal slices from both genotypes before, during and after a hypoxic episode. Although wild-type and xCT<sup>−/−</sup> slices showed equal suppression of synaptic transmission during hypoxia, mutant slices exhibited a persistent potentiation upon re-oxygenation, an effect we termed ‘post-hypoxic long-term potentiation (LTP)’. Blocking synaptic suppression during hypoxia by antagonizing adenosine A<sub>1</sub> receptors did not preclude post-hypoxic LTP. Further examination of the induction and expression mechanisms of this plasticity revealed that post-hypoxic LTP was driven by NMDA receptor activation, as well as increased calcium influx, with no change in paired-pulse facilitation. Hence, the observed phenomenon engaged similar mechanisms as classical LTP. This was a remarkable finding as theta-burst stimulation-induced LTP was equivalent between genotypes. Importantly, post-hypoxic LTP was generated in wild-type slices pretreated with system x<sub>c</sub><sup>−</sup> inhibitor, <i>S</i>-4-carboxyphenylglycine, thereby confirming the antiporter's role in this phenomenon. Collectively, these data indicate that system x<sub>c</sub><sup>−</sup> interference enables neuroplasticity in response to mild hypoxia, and, together with its regulation of cellular damage in the ischaemic core, suggest a role for the antiporter in post-ischaemic recovery of the penumbra.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":"109 9","pages":"1572-1592"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363115/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interference with glutamate antiporter system xc− enables post-hypoxic long-term potentiation in hippocampus\",\"authors\":\"Bradley S. Heit, Alex Chu, Alyssa McRay, Janet E. Richmond, Charles J. Heckman, John Larson\",\"doi\":\"10.1113/EP092045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our group previously showed that genetic or pharmacological inhibition of the cystine/glutamate antiporter, system x<sub>c</sub><sup>−</sup>, mitigates excitotoxicity after anoxia by increasing latency to anoxic depolarization, thus attenuating the ischaemic core. Hypoxia, however, which prevails in the ischaemic penumbra, is a condition where neurotransmission is altered, but excitotoxicity is not triggered. The present study employed mild hypoxia to further probe ischaemia-induced changes in neuronal responsiveness from wild-type and xCT KO (xCT<sup>−/−</sup>) mice. Synaptic transmission was monitored in hippocampal slices from both genotypes before, during and after a hypoxic episode. Although wild-type and xCT<sup>−/−</sup> slices showed equal suppression of synaptic transmission during hypoxia, mutant slices exhibited a persistent potentiation upon re-oxygenation, an effect we termed ‘post-hypoxic long-term potentiation (LTP)’. Blocking synaptic suppression during hypoxia by antagonizing adenosine A<sub>1</sub> receptors did not preclude post-hypoxic LTP. Further examination of the induction and expression mechanisms of this plasticity revealed that post-hypoxic LTP was driven by NMDA receptor activation, as well as increased calcium influx, with no change in paired-pulse facilitation. Hence, the observed phenomenon engaged similar mechanisms as classical LTP. This was a remarkable finding as theta-burst stimulation-induced LTP was equivalent between genotypes. Importantly, post-hypoxic LTP was generated in wild-type slices pretreated with system x<sub>c</sub><sup>−</sup> inhibitor, <i>S</i>-4-carboxyphenylglycine, thereby confirming the antiporter's role in this phenomenon. Collectively, these data indicate that system x<sub>c</sub><sup>−</sup> interference enables neuroplasticity in response to mild hypoxia, and, together with its regulation of cellular damage in the ischaemic core, suggest a role for the antiporter in post-ischaemic recovery of the penumbra.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\"109 9\",\"pages\":\"1572-1592\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1113/EP092045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1113/EP092045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Interference with glutamate antiporter system xc− enables post-hypoxic long-term potentiation in hippocampus
Our group previously showed that genetic or pharmacological inhibition of the cystine/glutamate antiporter, system xc−, mitigates excitotoxicity after anoxia by increasing latency to anoxic depolarization, thus attenuating the ischaemic core. Hypoxia, however, which prevails in the ischaemic penumbra, is a condition where neurotransmission is altered, but excitotoxicity is not triggered. The present study employed mild hypoxia to further probe ischaemia-induced changes in neuronal responsiveness from wild-type and xCT KO (xCT−/−) mice. Synaptic transmission was monitored in hippocampal slices from both genotypes before, during and after a hypoxic episode. Although wild-type and xCT−/− slices showed equal suppression of synaptic transmission during hypoxia, mutant slices exhibited a persistent potentiation upon re-oxygenation, an effect we termed ‘post-hypoxic long-term potentiation (LTP)’. Blocking synaptic suppression during hypoxia by antagonizing adenosine A1 receptors did not preclude post-hypoxic LTP. Further examination of the induction and expression mechanisms of this plasticity revealed that post-hypoxic LTP was driven by NMDA receptor activation, as well as increased calcium influx, with no change in paired-pulse facilitation. Hence, the observed phenomenon engaged similar mechanisms as classical LTP. This was a remarkable finding as theta-burst stimulation-induced LTP was equivalent between genotypes. Importantly, post-hypoxic LTP was generated in wild-type slices pretreated with system xc− inhibitor, S-4-carboxyphenylglycine, thereby confirming the antiporter's role in this phenomenon. Collectively, these data indicate that system xc− interference enables neuroplasticity in response to mild hypoxia, and, together with its regulation of cellular damage in the ischaemic core, suggest a role for the antiporter in post-ischaemic recovery of the penumbra.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.