Xitong Jia , Yong Wang , Meilian Wang , Hui Min , Zehou Fang , Haifeng Lu , Jiao Li , Yaming Cao , Lunhao Bai , Jinghan Lu
{"title":"磷酸酶抑制剂 BVT-948 可用于有效筛选疟原虫中的功能性性发育蛋白。","authors":"Xitong Jia , Yong Wang , Meilian Wang , Hui Min , Zehou Fang , Haifeng Lu , Jiao Li , Yaming Cao , Lunhao Bai , Jinghan Lu","doi":"10.1016/j.ijpddr.2024.100563","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Studying and discovering the molecular mechanism of <em>Plasmodium</em> sexual development is crucial for the development of transmission blocking drugs and malaria eradication. The aim of this study was to investigate the feasibility of using phosphatase inhibitors as a tool for screening proteins essential for <em>Plasmodium</em> sexual development and to discover proteins affecting the sexual development of malaria parasites.</p></div><div><h3>Methods</h3><p>Differences in protein phosphorylation among <em>Plasmodium</em> gametocytes incubated with BVT-948 under <em>in vitro</em> ookinete culture conditions were evaluated using phosphoproteomic methods. Gene Ontology (GO) analysis was performed to predict the mechanism by which BVT-948 affected gametocyte–ookinete conversion. The functions of 8 putative proteins involved in <em>Plasmodium berghei</em> sexual development were evaluated. Bioinformatic analysis was used to evaluate the possible mechanism of PBANKA_0100800 in gametogenesis and subsequent sexual development.</p></div><div><h3>Results</h3><p>The phosphorylation levels of 265 proteins decreased while those of 67 increased after treatment with BVT-948. Seven of the 8 genes selected for phenotype screening play roles in <em>P. berghei</em> sexual development, and 4 of these were associated with gametocytogenesis. PBANKA_0100800 plays essential roles in gametocyte–ookinete conversion and transmission to mosquitoes.</p></div><div><h3>Conclusions</h3><p>Seven proteins identified by screening affect <em>P. berghei</em> sexual development, suggesting that phosphatase inhibitors can be used for functional protein screening.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"26 ","pages":"Article 100563"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211320724000447/pdfft?md5=9f49542e884503e417896ae68e574d58&pid=1-s2.0-S2211320724000447-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The phosphatase inhibitor BVT-948 can be used to efficiently screen functional sexual development proteins in the malaria parasite Plasmodium berghei\",\"authors\":\"Xitong Jia , Yong Wang , Meilian Wang , Hui Min , Zehou Fang , Haifeng Lu , Jiao Li , Yaming Cao , Lunhao Bai , Jinghan Lu\",\"doi\":\"10.1016/j.ijpddr.2024.100563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Studying and discovering the molecular mechanism of <em>Plasmodium</em> sexual development is crucial for the development of transmission blocking drugs and malaria eradication. The aim of this study was to investigate the feasibility of using phosphatase inhibitors as a tool for screening proteins essential for <em>Plasmodium</em> sexual development and to discover proteins affecting the sexual development of malaria parasites.</p></div><div><h3>Methods</h3><p>Differences in protein phosphorylation among <em>Plasmodium</em> gametocytes incubated with BVT-948 under <em>in vitro</em> ookinete culture conditions were evaluated using phosphoproteomic methods. Gene Ontology (GO) analysis was performed to predict the mechanism by which BVT-948 affected gametocyte–ookinete conversion. The functions of 8 putative proteins involved in <em>Plasmodium berghei</em> sexual development were evaluated. Bioinformatic analysis was used to evaluate the possible mechanism of PBANKA_0100800 in gametogenesis and subsequent sexual development.</p></div><div><h3>Results</h3><p>The phosphorylation levels of 265 proteins decreased while those of 67 increased after treatment with BVT-948. Seven of the 8 genes selected for phenotype screening play roles in <em>P. berghei</em> sexual development, and 4 of these were associated with gametocytogenesis. PBANKA_0100800 plays essential roles in gametocyte–ookinete conversion and transmission to mosquitoes.</p></div><div><h3>Conclusions</h3><p>Seven proteins identified by screening affect <em>P. berghei</em> sexual development, suggesting that phosphatase inhibitors can be used for functional protein screening.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"26 \",\"pages\":\"Article 100563\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000447/pdfft?md5=9f49542e884503e417896ae68e574d58&pid=1-s2.0-S2211320724000447-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000447\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320724000447","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
The phosphatase inhibitor BVT-948 can be used to efficiently screen functional sexual development proteins in the malaria parasite Plasmodium berghei
Background
Studying and discovering the molecular mechanism of Plasmodium sexual development is crucial for the development of transmission blocking drugs and malaria eradication. The aim of this study was to investigate the feasibility of using phosphatase inhibitors as a tool for screening proteins essential for Plasmodium sexual development and to discover proteins affecting the sexual development of malaria parasites.
Methods
Differences in protein phosphorylation among Plasmodium gametocytes incubated with BVT-948 under in vitro ookinete culture conditions were evaluated using phosphoproteomic methods. Gene Ontology (GO) analysis was performed to predict the mechanism by which BVT-948 affected gametocyte–ookinete conversion. The functions of 8 putative proteins involved in Plasmodium berghei sexual development were evaluated. Bioinformatic analysis was used to evaluate the possible mechanism of PBANKA_0100800 in gametogenesis and subsequent sexual development.
Results
The phosphorylation levels of 265 proteins decreased while those of 67 increased after treatment with BVT-948. Seven of the 8 genes selected for phenotype screening play roles in P. berghei sexual development, and 4 of these were associated with gametocytogenesis. PBANKA_0100800 plays essential roles in gametocyte–ookinete conversion and transmission to mosquitoes.
Conclusions
Seven proteins identified by screening affect P. berghei sexual development, suggesting that phosphatase inhibitors can be used for functional protein screening.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.