{"title":"日本和韩国的原发性睫状肌运动障碍是由具有 3000 年历史的 DRC1 基因创始人变异引起的。","authors":"Ryotaro Hashizume, Yifei Xu, Makoto Ikejiri, Shimpei Gotoh, Kazuhiko Takeuchi","doi":"10.1038/s10038-024-01289-8","DOIUrl":null,"url":null,"abstract":"Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by ciliary structural abnormalities and dysfunction, leading to chronic rhinosinusitis, otitis media with effusion, bronchiectasis, and infertility. Approximately half of Japanese PCD cases are attributed to variants in the dynein regulatory complex subunit 1 (DRC1) gene, predominantly featuring homogeneous deletions of exons 1–4 spanning 27,748 base pairs on chromosome 2. Here, we report 10 new PCD cases (9 families) in addition to 29 previously reported cases (24 families) caused by DRC1 variants. Among these 39 cases, biallelic DRC1 exon 1–4 deletions were detected in 38 (97.4%). These DRC1 deletions exhibited an identical breakpoint in all PCD cases in the Japanese and Korean populations, strongly suggesting a founder effect. In this study, we performed haplotype analysis, using a whole-exome sequencing dataset of 18 Japanese PCD patients harboring large biallelic DRC1 deletions. We estimated that the founder allele likely emerged 115.1 generations ago (95% confidence interval: 33.7–205.1), suggesting an origin of approximately 3050 years ago, coinciding with the transition from the Jomon period to the early Yayoi period in Japan. Considering the formation of the modern Japanese population, the founder with the DRC1 exon 1–4 deletion likely lived on the Korean peninsula, with the allele later transmitted to Japan through migration. This study provides insights into the origin of the DRC1 copy number variant, the most frequent PCD variant in the Japanese and Korean populations, highlighting the importance of understanding population-specific genetic variations in the context of human migration and disease prevalence.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 12","pages":"655-661"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3000-year-old founder variant in the DRC1 gene causes primary ciliary dyskinesia in Japan and Korea\",\"authors\":\"Ryotaro Hashizume, Yifei Xu, Makoto Ikejiri, Shimpei Gotoh, Kazuhiko Takeuchi\",\"doi\":\"10.1038/s10038-024-01289-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by ciliary structural abnormalities and dysfunction, leading to chronic rhinosinusitis, otitis media with effusion, bronchiectasis, and infertility. Approximately half of Japanese PCD cases are attributed to variants in the dynein regulatory complex subunit 1 (DRC1) gene, predominantly featuring homogeneous deletions of exons 1–4 spanning 27,748 base pairs on chromosome 2. Here, we report 10 new PCD cases (9 families) in addition to 29 previously reported cases (24 families) caused by DRC1 variants. Among these 39 cases, biallelic DRC1 exon 1–4 deletions were detected in 38 (97.4%). These DRC1 deletions exhibited an identical breakpoint in all PCD cases in the Japanese and Korean populations, strongly suggesting a founder effect. In this study, we performed haplotype analysis, using a whole-exome sequencing dataset of 18 Japanese PCD patients harboring large biallelic DRC1 deletions. We estimated that the founder allele likely emerged 115.1 generations ago (95% confidence interval: 33.7–205.1), suggesting an origin of approximately 3050 years ago, coinciding with the transition from the Jomon period to the early Yayoi period in Japan. Considering the formation of the modern Japanese population, the founder with the DRC1 exon 1–4 deletion likely lived on the Korean peninsula, with the allele later transmitted to Japan through migration. This study provides insights into the origin of the DRC1 copy number variant, the most frequent PCD variant in the Japanese and Korean populations, highlighting the importance of understanding population-specific genetic variations in the context of human migration and disease prevalence.\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\"69 12\",\"pages\":\"655-661\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s10038-024-01289-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-024-01289-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A 3000-year-old founder variant in the DRC1 gene causes primary ciliary dyskinesia in Japan and Korea
Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by ciliary structural abnormalities and dysfunction, leading to chronic rhinosinusitis, otitis media with effusion, bronchiectasis, and infertility. Approximately half of Japanese PCD cases are attributed to variants in the dynein regulatory complex subunit 1 (DRC1) gene, predominantly featuring homogeneous deletions of exons 1–4 spanning 27,748 base pairs on chromosome 2. Here, we report 10 new PCD cases (9 families) in addition to 29 previously reported cases (24 families) caused by DRC1 variants. Among these 39 cases, biallelic DRC1 exon 1–4 deletions were detected in 38 (97.4%). These DRC1 deletions exhibited an identical breakpoint in all PCD cases in the Japanese and Korean populations, strongly suggesting a founder effect. In this study, we performed haplotype analysis, using a whole-exome sequencing dataset of 18 Japanese PCD patients harboring large biallelic DRC1 deletions. We estimated that the founder allele likely emerged 115.1 generations ago (95% confidence interval: 33.7–205.1), suggesting an origin of approximately 3050 years ago, coinciding with the transition from the Jomon period to the early Yayoi period in Japan. Considering the formation of the modern Japanese population, the founder with the DRC1 exon 1–4 deletion likely lived on the Korean peninsula, with the allele later transmitted to Japan through migration. This study provides insights into the origin of the DRC1 copy number variant, the most frequent PCD variant in the Japanese and Korean populations, highlighting the importance of understanding population-specific genetic variations in the context of human migration and disease prevalence.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.