Nisar Ahmad , Lixue Chen , Zixi Yuan , Xiaodong Ma , Xiaobo Yang , Yinan Wang , Yongshun Zhao , Huan Jin , Najib Khaidamah , Jinan Wang , Jiashuo Lu , Ziqi Liu , Moli Wu , Qian Wang , Yan Qi , Chong Wang , Yupu Zhao , Yang Piao , Rujie Huang , Yunpeng Diao , Xiaohong Shu
{"title":"嘧啶化合物 BY4003 和 BY4008 通过调节 JAK3/STAT3 信号通路抑制胶质母细胞瘤细胞的生长。","authors":"Nisar Ahmad , Lixue Chen , Zixi Yuan , Xiaodong Ma , Xiaobo Yang , Yinan Wang , Yongshun Zhao , Huan Jin , Najib Khaidamah , Jinan Wang , Jiashuo Lu , Ziqi Liu , Moli Wu , Qian Wang , Yan Qi , Chong Wang , Yupu Zhao , Yang Piao , Rujie Huang , Yunpeng Diao , Xiaohong Shu","doi":"10.1016/j.neurot.2024.e00431","DOIUrl":null,"url":null,"abstract":"<div><div>Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC<sub>50</sub> values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrimidine compounds BY4003 and BY4008 inhibit glioblastoma cells growth via modulating JAK3/STAT3 signaling pathway\",\"authors\":\"Nisar Ahmad , Lixue Chen , Zixi Yuan , Xiaodong Ma , Xiaobo Yang , Yinan Wang , Yongshun Zhao , Huan Jin , Najib Khaidamah , Jinan Wang , Jiashuo Lu , Ziqi Liu , Moli Wu , Qian Wang , Yan Qi , Chong Wang , Yupu Zhao , Yang Piao , Rujie Huang , Yunpeng Diao , Xiaohong Shu\",\"doi\":\"10.1016/j.neurot.2024.e00431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC<sub>50</sub> values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187874792400117X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187874792400117X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Pyrimidine compounds BY4003 and BY4008 inhibit glioblastoma cells growth via modulating JAK3/STAT3 signaling pathway
Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.