评估造血细胞移植中 HLA-DQ 异源二聚体变异的工具:HLA-DQ 异源二聚体工具。

IF 3.6 3区 医学 Q2 HEMATOLOGY Transplantation and Cellular Therapy Pub Date : 2024-11-01 DOI:10.1016/j.jtct.2024.08.006
Ray W. Sajulga Jr. , Yung-Tsi Bolon , Martin J. Maiers , Effie W. Petersdorf
{"title":"评估造血细胞移植中 HLA-DQ 异源二聚体变异的工具:HLA-DQ 异源二聚体工具。","authors":"Ray W. Sajulga Jr. ,&nbsp;Yung-Tsi Bolon ,&nbsp;Martin J. Maiers ,&nbsp;Effie W. Petersdorf","doi":"10.1016/j.jtct.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>When optimizing transplants, clinical decision-makers consider HLA-A, -B, -C, -DRB1 (8 matched alleles out of 8), and sometimes HLA-DQB1 (10 out of 10) matching between the patient and donor. HLA-DQ is a heterodimer formed by the β chain product of HLA-DQB1 and an α chain product of HLA-DQA1. In addition to molecules defined by the parentally inherited cis haplotypes, α-β trans-dimerization is possible between certain alleles, leading to unique molecules and a potential source of mismatched molecules. Recently, researchers uncovered that clinical outcome after HLA-DQB1-mismatched unrelated donor HCT depends on the total number of HLA-DQ molecule mismatches and the specific α-β heterodimer mismatch. Our objective in this study is to develop an automated tool for analyzing HLA-DQ heterodimer data and validating it through numerous datasets and analyses. By doing so, we provide an HLA-DQ heterodimer tool for DQα-DQβ trans-heterodimer evaluation, HLA-DQ imputation, and HLA-DQ-featured source selection to the transplant field. In our study, we leverage 352,148 high-confidence, statistically phased (via a modified expectation-maximization algorithm) HLA-DRB1∼DQA1∼DQB1 haplotypes, 1,052 pedigree-phased HLA-DQA1∼DQB1 haplotypes, and 13,663 historical transplants to characterize HLA-DQ heterodimers data. Using our developed QLASSy (HLA-DQA1 and HLA-DQB1 Heterodimers Assessment) tool, we first assessed the data quality of HLA-DQ heterodimers in our data for trans-dimers, missing HLA-DQA1 typing, and unexpected HLA-DQA1 and HLA-DQB1 combinations. Since trans-dimers enable up to four unique HLA-DQ molecules in individuals, we provide in-silico validations for 99.7% of 275 unique trans-dimers generated by 176,074 U.S. donors with HLA-DQA1 and HLA-DQB1 data. Many individuals lack HLA-DQA1 typing, so we developed and validated high-confidence HLA-DQ annotation imputation via HLA-DRB1 with &gt;99% correct predictions in 23,698 individuals. A select few individuals displayed unexpected HLA-DQ combinations. We revisited the typing of 61 donors with unexpected HLA-DQ combinations based on their HLA-DQA1 and HLA-DQB1 typing and corrected 22 out of 61 (36%) cases of donors through data review or retyping and used imputation to resolve unexpected combinations. After verifying the data quality of our datasets, we analyzed our datasets further: we explored the frequencies of observed HLA-DQ combinations to compare HLA-DQ across populations (for instance, we found more high-risk molecules in Asian/Pacific Islander and Black/African American populations), demonstrated the effect of HLA-DQA1 and HLA-DQB1 mismatching on HLA-DQ molecular mismatches, and highlighted where donor selections could be improved at the time of search for historical transplants with this new HLA-DQ information (where 51.9% of G2-mismatched transplants had lower-risk, G2-matched alternatives). We encapsulated our findings into a tool that imputes missing HLA-DQA1 as needed, annotates HLA-DQ (mis)matches, and highlights other important HLA-DQ data to consider for the present and future. Altogether, these valuable datasets, analyses, and a culminating tool serve as actionable resources to enhance donor selection and improve patient outcomes.</div></div>","PeriodicalId":23283,"journal":{"name":"Transplantation and Cellular Therapy","volume":"30 11","pages":"Pages 1084.e1-1084.e15"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tool for the Assessment of HLA-DQ Heterodimer Variation in Hematopoietic Cell Transplantation\",\"authors\":\"Ray W. Sajulga Jr. ,&nbsp;Yung-Tsi Bolon ,&nbsp;Martin J. Maiers ,&nbsp;Effie W. Petersdorf\",\"doi\":\"10.1016/j.jtct.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When optimizing transplants, clinical decision-makers consider HLA-A, -B, -C, -DRB1 (8 matched alleles out of 8), and sometimes HLA-DQB1 (10 out of 10) matching between the patient and donor. HLA-DQ is a heterodimer formed by the β chain product of HLA-DQB1 and an α chain product of HLA-DQA1. In addition to molecules defined by the parentally inherited cis haplotypes, α-β trans-dimerization is possible between certain alleles, leading to unique molecules and a potential source of mismatched molecules. Recently, researchers uncovered that clinical outcome after HLA-DQB1-mismatched unrelated donor HCT depends on the total number of HLA-DQ molecule mismatches and the specific α-β heterodimer mismatch. Our objective in this study is to develop an automated tool for analyzing HLA-DQ heterodimer data and validating it through numerous datasets and analyses. By doing so, we provide an HLA-DQ heterodimer tool for DQα-DQβ trans-heterodimer evaluation, HLA-DQ imputation, and HLA-DQ-featured source selection to the transplant field. In our study, we leverage 352,148 high-confidence, statistically phased (via a modified expectation-maximization algorithm) HLA-DRB1∼DQA1∼DQB1 haplotypes, 1,052 pedigree-phased HLA-DQA1∼DQB1 haplotypes, and 13,663 historical transplants to characterize HLA-DQ heterodimers data. Using our developed QLASSy (HLA-DQA1 and HLA-DQB1 Heterodimers Assessment) tool, we first assessed the data quality of HLA-DQ heterodimers in our data for trans-dimers, missing HLA-DQA1 typing, and unexpected HLA-DQA1 and HLA-DQB1 combinations. Since trans-dimers enable up to four unique HLA-DQ molecules in individuals, we provide in-silico validations for 99.7% of 275 unique trans-dimers generated by 176,074 U.S. donors with HLA-DQA1 and HLA-DQB1 data. Many individuals lack HLA-DQA1 typing, so we developed and validated high-confidence HLA-DQ annotation imputation via HLA-DRB1 with &gt;99% correct predictions in 23,698 individuals. A select few individuals displayed unexpected HLA-DQ combinations. We revisited the typing of 61 donors with unexpected HLA-DQ combinations based on their HLA-DQA1 and HLA-DQB1 typing and corrected 22 out of 61 (36%) cases of donors through data review or retyping and used imputation to resolve unexpected combinations. After verifying the data quality of our datasets, we analyzed our datasets further: we explored the frequencies of observed HLA-DQ combinations to compare HLA-DQ across populations (for instance, we found more high-risk molecules in Asian/Pacific Islander and Black/African American populations), demonstrated the effect of HLA-DQA1 and HLA-DQB1 mismatching on HLA-DQ molecular mismatches, and highlighted where donor selections could be improved at the time of search for historical transplants with this new HLA-DQ information (where 51.9% of G2-mismatched transplants had lower-risk, G2-matched alternatives). We encapsulated our findings into a tool that imputes missing HLA-DQA1 as needed, annotates HLA-DQ (mis)matches, and highlights other important HLA-DQ data to consider for the present and future. Altogether, these valuable datasets, analyses, and a culminating tool serve as actionable resources to enhance donor selection and improve patient outcomes.</div></div>\",\"PeriodicalId\":23283,\"journal\":{\"name\":\"Transplantation and Cellular Therapy\",\"volume\":\"30 11\",\"pages\":\"Pages 1084.e1-1084.e15\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transplantation and Cellular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666636724005864\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation and Cellular Therapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666636724005864","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在优化移植时,临床决策者会考虑患者和供体之间的 HLA-A、-B、-C、-DRB1(8 个等位基因中有 8 个匹配),有时也会考虑 HLA-DQB1 (10 个等位基因中有 10 个匹配)。HLA-DQ 是由 HLA-DQB1 的 β 链产物和 HLA-DQA1 的 α 链产物组成的异源二聚体。除了由父母遗传的顺式单倍型确定的分子外,某些等位基因之间也可能发生α-β反式二聚化,从而产生独特的分子和潜在的不匹配分子。最近,研究人员发现,HLA-DQB1 不匹配的非亲缘供体 HCT 后的临床结果取决于 HLA-DQ 分子错配的总数和特定的 α-β 异源二聚体错配:本研究的目的是开发一种自动工具,用于分析 HLA-DQ 异源二聚体数据,并通过大量数据集和分析进行验证。通过这样做,我们为移植领域提供了一种用于 DQα-DQβ 反式异源二聚体评估、HLA-DQ 估算和 HLA-DQ 特征源选择的 HLA-DQ 异源二聚体工具:在我们的研究中,我们利用了 352,148 个高置信度、统计分期(通过改进的期望最大化算法)的 HLA-DRB1∼DQA1∼DQB1 单倍型,1,052 个血统分期的 HLA-DQA1∼DQB1 单倍型,以及 13,663 例历史移植来描述 HLA-DQ 异源二聚体数据:利用我们开发的QLASSy(HLA-DQA1和HLA-DQB1异二聚体评估)工具,我们首先评估了数据中HLA-DQ异二聚体的数据质量,包括反式二聚体、HLA-DQA1分型缺失以及意外的HLA-DQA1和HLA-DQB1组合。由于反式二聚体能在个体中产生多达四种独特的 HLA-DQ 分子,我们为 176,074 名美国供体产生的 275 个独特反式二聚体中 99.7% 的 HLA-DQA1 和 HLA-DQB1 数据提供了校内验证。许多个体缺乏 HLA-DQA1 分型,因此我们开发并验证了通过 HLA-DRB1 进行的高可信度 HLA-DQ 注释归约,在 23,698 个个体中预测的正确率大于 99%。少数个体显示了意外的 HLA-DQ 组合。我们根据供体的 HLA-DQA1 和 HLA-DQB1 分型,重新对 61 例具有意外 HLA-DQ 组合的供体进行了分型,并通过数据审查或重新分型纠正了 61 例供体中的 22 例(36%),并使用归因法解决了意外组合的问题。在验证了数据集的数据质量后,我们对数据集进行了进一步分析:我们探究了观察到的 HLA-DQ 组合的频率,以比较不同人群的 HLA-DQ(例如,我们在亚洲/太平洋岛民和黑人/非洲裔美国人中发现了更多的高风险分子),证明了 HLA-DQA1 和 HLA-DQB1 错配对 HLA-DQ 分子错配的影响,并强调了在利用这些新的 HLA-DQ 信息搜索历史移植时,可以改进供体选择的地方(其中 51.结论:我们将研究结果汇总到一个工具中,该工具可根据需要计算缺失的 HLA-DQA1,注释 HLA-DQ(错误)匹配,并强调当前和未来需要考虑的其他重要 HLA-DQ 数据。总之,这些有价值的数据集、分析和最终工具都是可操作的资源,可用于加强供体选择和改善患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Tool for the Assessment of HLA-DQ Heterodimer Variation in Hematopoietic Cell Transplantation
When optimizing transplants, clinical decision-makers consider HLA-A, -B, -C, -DRB1 (8 matched alleles out of 8), and sometimes HLA-DQB1 (10 out of 10) matching between the patient and donor. HLA-DQ is a heterodimer formed by the β chain product of HLA-DQB1 and an α chain product of HLA-DQA1. In addition to molecules defined by the parentally inherited cis haplotypes, α-β trans-dimerization is possible between certain alleles, leading to unique molecules and a potential source of mismatched molecules. Recently, researchers uncovered that clinical outcome after HLA-DQB1-mismatched unrelated donor HCT depends on the total number of HLA-DQ molecule mismatches and the specific α-β heterodimer mismatch. Our objective in this study is to develop an automated tool for analyzing HLA-DQ heterodimer data and validating it through numerous datasets and analyses. By doing so, we provide an HLA-DQ heterodimer tool for DQα-DQβ trans-heterodimer evaluation, HLA-DQ imputation, and HLA-DQ-featured source selection to the transplant field. In our study, we leverage 352,148 high-confidence, statistically phased (via a modified expectation-maximization algorithm) HLA-DRB1∼DQA1∼DQB1 haplotypes, 1,052 pedigree-phased HLA-DQA1∼DQB1 haplotypes, and 13,663 historical transplants to characterize HLA-DQ heterodimers data. Using our developed QLASSy (HLA-DQA1 and HLA-DQB1 Heterodimers Assessment) tool, we first assessed the data quality of HLA-DQ heterodimers in our data for trans-dimers, missing HLA-DQA1 typing, and unexpected HLA-DQA1 and HLA-DQB1 combinations. Since trans-dimers enable up to four unique HLA-DQ molecules in individuals, we provide in-silico validations for 99.7% of 275 unique trans-dimers generated by 176,074 U.S. donors with HLA-DQA1 and HLA-DQB1 data. Many individuals lack HLA-DQA1 typing, so we developed and validated high-confidence HLA-DQ annotation imputation via HLA-DRB1 with >99% correct predictions in 23,698 individuals. A select few individuals displayed unexpected HLA-DQ combinations. We revisited the typing of 61 donors with unexpected HLA-DQ combinations based on their HLA-DQA1 and HLA-DQB1 typing and corrected 22 out of 61 (36%) cases of donors through data review or retyping and used imputation to resolve unexpected combinations. After verifying the data quality of our datasets, we analyzed our datasets further: we explored the frequencies of observed HLA-DQ combinations to compare HLA-DQ across populations (for instance, we found more high-risk molecules in Asian/Pacific Islander and Black/African American populations), demonstrated the effect of HLA-DQA1 and HLA-DQB1 mismatching on HLA-DQ molecular mismatches, and highlighted where donor selections could be improved at the time of search for historical transplants with this new HLA-DQ information (where 51.9% of G2-mismatched transplants had lower-risk, G2-matched alternatives). We encapsulated our findings into a tool that imputes missing HLA-DQA1 as needed, annotates HLA-DQ (mis)matches, and highlights other important HLA-DQ data to consider for the present and future. Altogether, these valuable datasets, analyses, and a culminating tool serve as actionable resources to enhance donor selection and improve patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
15.60%
发文量
1061
审稿时长
51 days
期刊最新文献
Awakening from REMS: ASTCT 80/20 Ongoing Recommendations for Safe Use of Chimeric Antigen Receptor T Cells. Impact of real-world clinical factors on an analysis of the cost-effectiveness of 'immediate CAR-T' versus 'late CAR-T' as second-line treatment for DLBCL patients: Immediate or late CAR-T as second-line DLBCL treatment. Bloodstream infections and colonization in hematopoietic stem cell transplant recipients at a South African center: A retrospective analysis. Pediatric Transplant and Cellular Therapy Consortium RESILIENT Conference on Pediatric Chronic Graft-Versus-Host Disease Survivorship After Hematopoietic Cell Transplantation: Part III. Long-term Impact of Chronic GVHD on Endocrinologic, Cardiovascular, and Metabolic Outcomes in Survivors of Pediatric HCT. Assessment of the Immunodeficiency Scoring Index for predicting outcomes after Respiratory Syncytial Virus infection in Allogeneic Stem Cell Transplant recipients.: ISI performance for RVS infections after allo-HCT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1