通过多代理强化学习实现车联网终端协作的联合计算卸载和资源分配。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-11-01 Epub Date: 2024-08-08 DOI:10.1016/j.neunet.2024.106621
Cong Wang, Yaoming Wang, Ying Yuan, Sancheng Peng, Guorui Li, Pengfei Yin
{"title":"通过多代理强化学习实现车联网终端协作的联合计算卸载和资源分配。","authors":"Cong Wang, Yaoming Wang, Ying Yuan, Sancheng Peng, Guorui Li, Pengfei Yin","doi":"10.1016/j.neunet.2024.106621","DOIUrl":null,"url":null,"abstract":"<p><p>Vehicular edge computing (VEC), a promising paradigm for the development of emerging intelligent transportation systems, can provide lower service latency for vehicular applications. However, it is still a challenge to fulfill the requirements of such applications with stringent latency requirements in the VEC system with limited resources. In addition, existing methods focus on handling the offloading task in a certain time slot with statically allocated resources, but ignore the heterogeneous tasks' different resource requirements, resulting in resource wastage. To solve the real-time task offloading and heterogeneous resource allocation problem in VEC system, we propose a decentralized solution based on the attention mechanism and recurrent neural networks (RNN) with a multi-agent distributed deep deterministic policy gradient (AR-MAD4PG). First, to address the partial observability of agents, we construct a shared agent graph and propose a periodic communication mechanism that enables edge nodes to aggregate information from other edge nodes. Second, to help agents better understand the current system state, we design an RNN-based feature extraction network to capture the historical state and resource allocation information of the VEC system. Thirdly, to tackle the challenges of excessive joint observation-action space and ineffective information interference, we adopt the multi-head attention mechanism to compress the dimension of the observation-action space of agents. Finally, we build a simulation model based on the actual vehicle trajectories, and the experimental results show that our proposed method outperforms the existing approaches.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"179 ","pages":"106621"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint computation offloading and resource allocation for end-edge collaboration in internet of vehicles via multi-agent reinforcement learning.\",\"authors\":\"Cong Wang, Yaoming Wang, Ying Yuan, Sancheng Peng, Guorui Li, Pengfei Yin\",\"doi\":\"10.1016/j.neunet.2024.106621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vehicular edge computing (VEC), a promising paradigm for the development of emerging intelligent transportation systems, can provide lower service latency for vehicular applications. However, it is still a challenge to fulfill the requirements of such applications with stringent latency requirements in the VEC system with limited resources. In addition, existing methods focus on handling the offloading task in a certain time slot with statically allocated resources, but ignore the heterogeneous tasks' different resource requirements, resulting in resource wastage. To solve the real-time task offloading and heterogeneous resource allocation problem in VEC system, we propose a decentralized solution based on the attention mechanism and recurrent neural networks (RNN) with a multi-agent distributed deep deterministic policy gradient (AR-MAD4PG). First, to address the partial observability of agents, we construct a shared agent graph and propose a periodic communication mechanism that enables edge nodes to aggregate information from other edge nodes. Second, to help agents better understand the current system state, we design an RNN-based feature extraction network to capture the historical state and resource allocation information of the VEC system. Thirdly, to tackle the challenges of excessive joint observation-action space and ineffective information interference, we adopt the multi-head attention mechanism to compress the dimension of the observation-action space of agents. Finally, we build a simulation model based on the actual vehicle trajectories, and the experimental results show that our proposed method outperforms the existing approaches.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"179 \",\"pages\":\"106621\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106621\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106621","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

车载边缘计算(Vehicular Edge Computing,VEC)是发展新兴智能交通系统的一个前景广阔的范例,它可以为车载应用提供更低的服务延迟。然而,在资源有限的 VEC 系统中,如何满足此类应用对延迟的严格要求仍是一项挑战。此外,现有方法侧重于在某个时隙内利用静态分配的资源处理卸载任务,但忽略了异构任务对资源的不同需求,造成资源浪费。为了解决 VEC 系统中的实时任务卸载和异构资源分配问题,我们提出了一种基于注意力机制和递归神经网络(RNN)的多代理分布式深度确定性策略梯度(AR-MAD4PG)的分散式解决方案。首先,为了解决代理的部分可观测性问题,我们构建了一个共享代理图,并提出了一种定期通信机制,使边缘节点能够汇总来自其他边缘节点的信息。其次,为了帮助代理更好地了解当前系统状态,我们设计了基于 RNN 的特征提取网络,以捕捉 VEC 系统的历史状态和资源分配信息。第三,针对联合观测-行动空间过大和无效信息干扰的挑战,我们采用多头关注机制来压缩代理的观测-行动空间维度。最后,我们建立了基于实际车辆轨迹的仿真模型,实验结果表明我们提出的方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint computation offloading and resource allocation for end-edge collaboration in internet of vehicles via multi-agent reinforcement learning.

Vehicular edge computing (VEC), a promising paradigm for the development of emerging intelligent transportation systems, can provide lower service latency for vehicular applications. However, it is still a challenge to fulfill the requirements of such applications with stringent latency requirements in the VEC system with limited resources. In addition, existing methods focus on handling the offloading task in a certain time slot with statically allocated resources, but ignore the heterogeneous tasks' different resource requirements, resulting in resource wastage. To solve the real-time task offloading and heterogeneous resource allocation problem in VEC system, we propose a decentralized solution based on the attention mechanism and recurrent neural networks (RNN) with a multi-agent distributed deep deterministic policy gradient (AR-MAD4PG). First, to address the partial observability of agents, we construct a shared agent graph and propose a periodic communication mechanism that enables edge nodes to aggregate information from other edge nodes. Second, to help agents better understand the current system state, we design an RNN-based feature extraction network to capture the historical state and resource allocation information of the VEC system. Thirdly, to tackle the challenges of excessive joint observation-action space and ineffective information interference, we adopt the multi-head attention mechanism to compress the dimension of the observation-action space of agents. Finally, we build a simulation model based on the actual vehicle trajectories, and the experimental results show that our proposed method outperforms the existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition. Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems. Corrigendum to "Multi-view Graph Pooling with Coarsened Graph Disentanglement" [Neural Networks 174 (2024) 1-10/106221]. Multi-compartment neuron and population encoding powered spiking neural network for deep distributional reinforcement learning. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1