具有内部复杂性的网络模型是人工智能和神经科学的桥梁。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-08-16 DOI:10.1038/s43588-024-00674-9
Linxuan He, Yunhui Xu, Weihua He, Yihan Lin, Yang Tian, Yujie Wu, Wenhui Wang, Ziyang Zhang, Junwei Han, Yonghong Tian, Bo Xu, Guoqi Li
{"title":"具有内部复杂性的网络模型是人工智能和神经科学的桥梁。","authors":"Linxuan He, Yunhui Xu, Weihua He, Yihan Lin, Yang Tian, Yujie Wu, Wenhui Wang, Ziyang Zhang, Junwei Han, Yonghong Tian, Bo Xu, Guoqi Li","doi":"10.1038/s43588-024-00674-9","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) researchers currently believe that the main approach to building more general model problems is the big AI model, where existing neural networks are becoming deeper, larger and wider. We term this the big model with external complexity approach. In this work we argue that there is another approach called small model with internal complexity, which can be used to find a suitable path of incorporating rich properties into neurons to construct larger and more efficient AI models. We uncover that one has to increase the scale of the network externally to stimulate the same dynamical properties. To illustrate this, we build a Hodgkin–Huxley (HH) network with rich internal complexity, where each neuron is an HH model, and prove that the dynamical properties and performance of the HH network can be equivalent to a bigger leaky integrate-and-fire (LIF) network, where each neuron is a LIF neuron with simple internal complexity. This study shows that by enhancing internal complexity of neurons in a Hodgkin–Huxley network, similar performance to larger, simpler networks can be achieved, suggesting an alternative path for powerful AI systems by focusing on neuron complexity.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"584-599"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network model with internal complexity bridges artificial intelligence and neuroscience\",\"authors\":\"Linxuan He, Yunhui Xu, Weihua He, Yihan Lin, Yang Tian, Yujie Wu, Wenhui Wang, Ziyang Zhang, Junwei Han, Yonghong Tian, Bo Xu, Guoqi Li\",\"doi\":\"10.1038/s43588-024-00674-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) researchers currently believe that the main approach to building more general model problems is the big AI model, where existing neural networks are becoming deeper, larger and wider. We term this the big model with external complexity approach. In this work we argue that there is another approach called small model with internal complexity, which can be used to find a suitable path of incorporating rich properties into neurons to construct larger and more efficient AI models. We uncover that one has to increase the scale of the network externally to stimulate the same dynamical properties. To illustrate this, we build a Hodgkin–Huxley (HH) network with rich internal complexity, where each neuron is an HH model, and prove that the dynamical properties and performance of the HH network can be equivalent to a bigger leaky integrate-and-fire (LIF) network, where each neuron is a LIF neuron with simple internal complexity. This study shows that by enhancing internal complexity of neurons in a Hodgkin–Huxley network, similar performance to larger, simpler networks can be achieved, suggesting an alternative path for powerful AI systems by focusing on neuron complexity.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 8\",\"pages\":\"584-599\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00674-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00674-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)研究人员目前认为,建立更通用模型问题的主要方法是大人工智能模型,即现有的神经网络变得更深、更大、更广。我们称之为外部复杂性大模型方法。在这项工作中,我们认为还有另一种方法,称为具有内部复杂性的小模型,可以用来找到一条合适的路径,将丰富的属性融入神经元,从而构建更大、更高效的人工智能模型。我们发现,要激发同样的动态特性,必须从外部扩大网络的规模。为了说明这一点,我们构建了一个具有丰富内部复杂性的霍奇金-赫胥黎(HH)网络,其中每个神经元都是一个 HH 模型,并证明 HH 网络的动态特性和性能可以等同于一个更大的泄漏积分发射(LIF)网络,其中每个神经元都是一个具有简单内部复杂性的 LIF 神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network model with internal complexity bridges artificial intelligence and neuroscience
Artificial intelligence (AI) researchers currently believe that the main approach to building more general model problems is the big AI model, where existing neural networks are becoming deeper, larger and wider. We term this the big model with external complexity approach. In this work we argue that there is another approach called small model with internal complexity, which can be used to find a suitable path of incorporating rich properties into neurons to construct larger and more efficient AI models. We uncover that one has to increase the scale of the network externally to stimulate the same dynamical properties. To illustrate this, we build a Hodgkin–Huxley (HH) network with rich internal complexity, where each neuron is an HH model, and prove that the dynamical properties and performance of the HH network can be equivalent to a bigger leaky integrate-and-fire (LIF) network, where each neuron is a LIF neuron with simple internal complexity. This study shows that by enhancing internal complexity of neurons in a Hodgkin–Huxley network, similar performance to larger, simpler networks can be achieved, suggesting an alternative path for powerful AI systems by focusing on neuron complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Harnessing the power of DNA for computing Collective deliberation driven by AI Harnessing deep learning to build optimized ligands MassiveFold: unveiling AlphaFold’s hidden potential with optimized and parallelized massive sampling A deep learning approach for rational ligand generation with toxicity control via reactive building blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1