Song Fu , Lin Lin , Yue Wang , Minghang Zhao , Feng Guo , Baihong Zhong , Shisheng Zhong
{"title":"用于航空液压泵故障诊断的多尺度动态并行收缩网络及其可推广应用。","authors":"Song Fu , Lin Lin , Yue Wang , Minghang Zhao , Feng Guo , Baihong Zhong , Shisheng Zhong","doi":"10.1016/j.isatra.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming to address the multiscale characteristics and noise corruption problems in the vibration signals of aviation hydraulic pumps, this article develops a novel Multiscale Dynamically Parallel Shrinkage Network (MDPSN) to learn complementary and rich fault-related multiscale features, with the ultimate goal of yielding higher diagnostic accuracy. One significant property is the development of a novel dynamically parallel shrinking module (DPSM) that adaptively generates independent soft thresholds for different scales, effectively shrinking noise-related features to zeros. On one hand, DPSM aggregates and interacts with features at all scales to construct a global feature representation containing richer fault-related information, which is served as the foundation for soft thresholding generation, significantly improving the accuracy and rationality of the generated thresholds. On the other hand, DPSM can adaptively generate individual soft threshold for each scale, allowing each scale to use an independent threshold tailored to its own characteristic to eliminate noise-related information. This avoids the issues of over-denoising or under-denoising caused by the uniform application of thresholds across all scales. Finally, the effectiveness of MDPSN is validated by a series of experiment comparisons on an aviation hydraulic pump dataset and two bearing datasets with various types of noise. The experimental results demonstrate that MDPSN achieves superior diagnostic accuracy compared to five other comparison methods.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"154 ","pages":"Pages 57-72"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale dynamically parallel shrinkage network for fault diagnosis of aviation hydraulic pump and its generalizable applications\",\"authors\":\"Song Fu , Lin Lin , Yue Wang , Minghang Zhao , Feng Guo , Baihong Zhong , Shisheng Zhong\",\"doi\":\"10.1016/j.isatra.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aiming to address the multiscale characteristics and noise corruption problems in the vibration signals of aviation hydraulic pumps, this article develops a novel Multiscale Dynamically Parallel Shrinkage Network (MDPSN) to learn complementary and rich fault-related multiscale features, with the ultimate goal of yielding higher diagnostic accuracy. One significant property is the development of a novel dynamically parallel shrinking module (DPSM) that adaptively generates independent soft thresholds for different scales, effectively shrinking noise-related features to zeros. On one hand, DPSM aggregates and interacts with features at all scales to construct a global feature representation containing richer fault-related information, which is served as the foundation for soft thresholding generation, significantly improving the accuracy and rationality of the generated thresholds. On the other hand, DPSM can adaptively generate individual soft threshold for each scale, allowing each scale to use an independent threshold tailored to its own characteristic to eliminate noise-related information. This avoids the issues of over-denoising or under-denoising caused by the uniform application of thresholds across all scales. Finally, the effectiveness of MDPSN is validated by a series of experiment comparisons on an aviation hydraulic pump dataset and two bearing datasets with various types of noise. The experimental results demonstrate that MDPSN achieves superior diagnostic accuracy compared to five other comparison methods.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"154 \",\"pages\":\"Pages 57-72\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003811\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003811","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multiscale dynamically parallel shrinkage network for fault diagnosis of aviation hydraulic pump and its generalizable applications
Aiming to address the multiscale characteristics and noise corruption problems in the vibration signals of aviation hydraulic pumps, this article develops a novel Multiscale Dynamically Parallel Shrinkage Network (MDPSN) to learn complementary and rich fault-related multiscale features, with the ultimate goal of yielding higher diagnostic accuracy. One significant property is the development of a novel dynamically parallel shrinking module (DPSM) that adaptively generates independent soft thresholds for different scales, effectively shrinking noise-related features to zeros. On one hand, DPSM aggregates and interacts with features at all scales to construct a global feature representation containing richer fault-related information, which is served as the foundation for soft thresholding generation, significantly improving the accuracy and rationality of the generated thresholds. On the other hand, DPSM can adaptively generate individual soft threshold for each scale, allowing each scale to use an independent threshold tailored to its own characteristic to eliminate noise-related information. This avoids the issues of over-denoising or under-denoising caused by the uniform application of thresholds across all scales. Finally, the effectiveness of MDPSN is validated by a series of experiment comparisons on an aviation hydraulic pump dataset and two bearing datasets with various types of noise. The experimental results demonstrate that MDPSN achieves superior diagnostic accuracy compared to five other comparison methods.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.