{"title":"电池状态预测和寿命估算的系统识别","authors":"Chenyi Li, Long Zhang","doi":"10.1016/j.ifacol.2024.07.215","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a nonlinear system Identification method, wavelet-network-based Nonlinear Auto-Regressive Exogenous (NLARX) approach, is employed for battery state estimation and lifespan estimation. More specifically, three key battery parameters and health metrics, including temperature, voltage and State of Charge (SOC), are estimated and these parameters are essential for condition or state monitoring. Further, State of Health (SOH), crucial for forecasting the battery remaining useful life, is also predicted. Two open datasets are used to train and validated the performance of the proposed method. For temperature and voltage forecasting, the NLARX model outperforms the existing Thermal Single Particle Model with electrolyte (TSPMe) for prediction horizons under 600 seconds. In SOC estimations, the NLARX method produces consistent 15-second ahead prediction results even only using a small percentage of training data, while the SOH estimation, the proposed metho provides precise SOH variation prediction for 400 post cycles with less than 10% of the batterys life for training. Extensive results demonstrates that the NLARX model’s promise for the precise prediction of key battery parameters and health metrics and it can be used as a useful tool for battery fault detection and remaining useful life prediction.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 4","pages":"Pages 186-191"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324002994/pdf?md5=82e388d405a5d66317792ba47008e123&pid=1-s2.0-S2405896324002994-main.pdf","citationCount":"0","resultStr":"{\"title\":\"System Identification for Battery State Prediction and Lifespan Estimation\",\"authors\":\"Chenyi Li, Long Zhang\",\"doi\":\"10.1016/j.ifacol.2024.07.215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a nonlinear system Identification method, wavelet-network-based Nonlinear Auto-Regressive Exogenous (NLARX) approach, is employed for battery state estimation and lifespan estimation. More specifically, three key battery parameters and health metrics, including temperature, voltage and State of Charge (SOC), are estimated and these parameters are essential for condition or state monitoring. Further, State of Health (SOH), crucial for forecasting the battery remaining useful life, is also predicted. Two open datasets are used to train and validated the performance of the proposed method. For temperature and voltage forecasting, the NLARX model outperforms the existing Thermal Single Particle Model with electrolyte (TSPMe) for prediction horizons under 600 seconds. In SOC estimations, the NLARX method produces consistent 15-second ahead prediction results even only using a small percentage of training data, while the SOH estimation, the proposed metho provides precise SOH variation prediction for 400 post cycles with less than 10% of the batterys life for training. Extensive results demonstrates that the NLARX model’s promise for the precise prediction of key battery parameters and health metrics and it can be used as a useful tool for battery fault detection and remaining useful life prediction.</p></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 4\",\"pages\":\"Pages 186-191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324002994/pdf?md5=82e388d405a5d66317792ba47008e123&pid=1-s2.0-S2405896324002994-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324002994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324002994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
System Identification for Battery State Prediction and Lifespan Estimation
In this paper, a nonlinear system Identification method, wavelet-network-based Nonlinear Auto-Regressive Exogenous (NLARX) approach, is employed for battery state estimation and lifespan estimation. More specifically, three key battery parameters and health metrics, including temperature, voltage and State of Charge (SOC), are estimated and these parameters are essential for condition or state monitoring. Further, State of Health (SOH), crucial for forecasting the battery remaining useful life, is also predicted. Two open datasets are used to train and validated the performance of the proposed method. For temperature and voltage forecasting, the NLARX model outperforms the existing Thermal Single Particle Model with electrolyte (TSPMe) for prediction horizons under 600 seconds. In SOC estimations, the NLARX method produces consistent 15-second ahead prediction results even only using a small percentage of training data, while the SOH estimation, the proposed metho provides precise SOH variation prediction for 400 post cycles with less than 10% of the batterys life for training. Extensive results demonstrates that the NLARX model’s promise for the precise prediction of key battery parameters and health metrics and it can be used as a useful tool for battery fault detection and remaining useful life prediction.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.