热液中氧化硫物种的拉曼光谱

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Volcanology and Geothermal Research Pub Date : 2024-08-05 DOI:10.1016/j.jvolgeores.2024.108146
Christian Schmidt , Sandro Jahn
{"title":"热液中氧化硫物种的拉曼光谱","authors":"Christian Schmidt ,&nbsp;Sandro Jahn","doi":"10.1016/j.jvolgeores.2024.108146","DOIUrl":null,"url":null,"abstract":"<div><p>Raman spectroscopic determination of sulfur species molalities in hydrothermal fluids requires correct assignment and knowledge of the scattering efficiencies of Raman bands. Therefore, we studied the Raman spectra of NaHSO<sub>4</sub> and H<sub>2</sub>SO<sub>4</sub> solutions experimentally to 700 °C, and of Na<sub>2</sub>SO<sub>4</sub>, NaHSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, and H<sub>2</sub>SO<sub>3</sub> solutions by ab initio molecular dynamics simulation at 727 °C. The results indicate that the scattering efficiencies of the <em>ν</em><sub>s</sub>(SO<sub>3</sub>), ν<sub>as</sub>(SO<sub>3</sub>), and ν(S–OH) Raman bands of HSO<sub>4</sub><sup>−</sup>(aq) depend on the H<sup>+</sup> activity. The asymmetric shape of the ν<sub>s</sub>(SO<sub>3</sub>) Raman band of HSO<sub>4</sub><sup>−</sup>(aq) becomes more symmetric with increasing temperature, which correlates with decreasing hydrogen bonding in the molecular environment. Proton activity and ion pairing do not have a large effect on the change in the band asymmetry with temperature, and a resonance effect on the band shape is not observed. Therefore, we attribute the asymmetric shape of the ν<sub>s</sub>(SO<sub>3</sub>) Raman band of HSO<sub>4</sub><sup>−</sup>(aq) mostly to hydrogen bonding of the proton in the H–OSO<sub>3</sub><sup>−</sup> molecule with water in its environment. The AIMD simulations clarify assignments of Raman bands of H<sub>2</sub>SO<sub>4</sub><sup>0</sup>, specifically to ν<sub>s</sub>(SO<sub>2</sub>) and ν<sub>as</sub>(SO<sub>2</sub>) at ∼1140 cm<sup>−1</sup> and ∼1370 cm<sup>−1</sup>, to ν<sub>s</sub>(SO<sub>4</sub>) and ν<sub>as</sub>(SO<sub>4</sub>) at ∼970 cm<sup>−1</sup> and ∼1220 cm<sup>−1</sup>, and to ν<sub>s</sub>(S–(OH)<sub>2</sub>) and ν<sub>as</sub>(S–(OH)<sub>2</sub>) at ∼750 cm<sup>−1</sup> and ∼840 cm<sup>−1</sup>. In addition, the experiments showed that diamond is not inert to H<sub>2</sub>SO<sub>4</sub> at high temperatures as reduction of S(VI) to S(IV) produces SO<sub>2</sub><sup>0</sup> and oxidation of diamond generates CO<sub>2</sub><sup>0</sup>.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"454 ","pages":"Article 108146"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377027324001380/pdfft?md5=440e4ed03a45bd5364ba185af336b023&pid=1-s2.0-S0377027324001380-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Raman spectra of oxidized sulfur species in hydrothermal fluids\",\"authors\":\"Christian Schmidt ,&nbsp;Sandro Jahn\",\"doi\":\"10.1016/j.jvolgeores.2024.108146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Raman spectroscopic determination of sulfur species molalities in hydrothermal fluids requires correct assignment and knowledge of the scattering efficiencies of Raman bands. Therefore, we studied the Raman spectra of NaHSO<sub>4</sub> and H<sub>2</sub>SO<sub>4</sub> solutions experimentally to 700 °C, and of Na<sub>2</sub>SO<sub>4</sub>, NaHSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, and H<sub>2</sub>SO<sub>3</sub> solutions by ab initio molecular dynamics simulation at 727 °C. The results indicate that the scattering efficiencies of the <em>ν</em><sub>s</sub>(SO<sub>3</sub>), ν<sub>as</sub>(SO<sub>3</sub>), and ν(S–OH) Raman bands of HSO<sub>4</sub><sup>−</sup>(aq) depend on the H<sup>+</sup> activity. The asymmetric shape of the ν<sub>s</sub>(SO<sub>3</sub>) Raman band of HSO<sub>4</sub><sup>−</sup>(aq) becomes more symmetric with increasing temperature, which correlates with decreasing hydrogen bonding in the molecular environment. Proton activity and ion pairing do not have a large effect on the change in the band asymmetry with temperature, and a resonance effect on the band shape is not observed. Therefore, we attribute the asymmetric shape of the ν<sub>s</sub>(SO<sub>3</sub>) Raman band of HSO<sub>4</sub><sup>−</sup>(aq) mostly to hydrogen bonding of the proton in the H–OSO<sub>3</sub><sup>−</sup> molecule with water in its environment. The AIMD simulations clarify assignments of Raman bands of H<sub>2</sub>SO<sub>4</sub><sup>0</sup>, specifically to ν<sub>s</sub>(SO<sub>2</sub>) and ν<sub>as</sub>(SO<sub>2</sub>) at ∼1140 cm<sup>−1</sup> and ∼1370 cm<sup>−1</sup>, to ν<sub>s</sub>(SO<sub>4</sub>) and ν<sub>as</sub>(SO<sub>4</sub>) at ∼970 cm<sup>−1</sup> and ∼1220 cm<sup>−1</sup>, and to ν<sub>s</sub>(S–(OH)<sub>2</sub>) and ν<sub>as</sub>(S–(OH)<sub>2</sub>) at ∼750 cm<sup>−1</sup> and ∼840 cm<sup>−1</sup>. In addition, the experiments showed that diamond is not inert to H<sub>2</sub>SO<sub>4</sub> at high temperatures as reduction of S(VI) to S(IV) produces SO<sub>2</sub><sup>0</sup> and oxidation of diamond generates CO<sub>2</sub><sup>0</sup>.</p></div>\",\"PeriodicalId\":54753,\"journal\":{\"name\":\"Journal of Volcanology and Geothermal Research\",\"volume\":\"454 \",\"pages\":\"Article 108146\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0377027324001380/pdfft?md5=440e4ed03a45bd5364ba185af336b023&pid=1-s2.0-S0377027324001380-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Volcanology and Geothermal Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377027324001380\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001380","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要通过拉曼光谱测定热液中硫物种的摩尔数,就必须正确分配和了解拉曼光谱带的散射效率。因此,我们通过实验研究了 700 ℃ 下 NaHSO4 和 H2SO4 溶液的拉曼光谱,并通过 ab initio 分子动力学模拟研究了 727 ℃ 下 Na2SO4、NaHSO4、H2SO4 和 H2SO3 溶液的拉曼光谱。结果表明,HSO4-(aq)的νs(SO3)、νas(SO3)和ν(S-OH)拉曼光谱带的散射效率取决于 H+ 活性。随着温度的升高,HSO4-(aq) νs(SO3)拉曼带的不对称形状变得更加对称,这与分子环境中氢键的减少有关。质子活动和离子配对对带的不对称随温度的变化影响不大,也没有观察到共振对带形的影响。因此,我们认为 HSO4-(aq) νs(SO3)拉曼频带的不对称形状主要是由于 H-OSO3- 分子中的质子与环境中的水发生了氢键作用。AIMD 模拟明确了 H2SO40 的拉曼带,特别是 ∼1140 cm-1 和 ∼1370 cm-1 处的νs(SO2)和νas(SO2)、970 cm-1 和 ∼1220 cm-1 处的νs(SO4) 和 νas(SO4) ,以及 750 cm-1 和 ∼840 cm-1 处的νs(S-(OH)2) 和 νas(S-(OH)2) 。此外,实验还表明,金刚石在高温下对 H2SO4 并非惰性,因为 S(VI) 还原成 S(IV) 会产生 SO20,而金刚石氧化则会产生 CO20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Raman spectra of oxidized sulfur species in hydrothermal fluids

Raman spectroscopic determination of sulfur species molalities in hydrothermal fluids requires correct assignment and knowledge of the scattering efficiencies of Raman bands. Therefore, we studied the Raman spectra of NaHSO4 and H2SO4 solutions experimentally to 700 °C, and of Na2SO4, NaHSO4, H2SO4, and H2SO3 solutions by ab initio molecular dynamics simulation at 727 °C. The results indicate that the scattering efficiencies of the νs(SO3), νas(SO3), and ν(S–OH) Raman bands of HSO4(aq) depend on the H+ activity. The asymmetric shape of the νs(SO3) Raman band of HSO4(aq) becomes more symmetric with increasing temperature, which correlates with decreasing hydrogen bonding in the molecular environment. Proton activity and ion pairing do not have a large effect on the change in the band asymmetry with temperature, and a resonance effect on the band shape is not observed. Therefore, we attribute the asymmetric shape of the νs(SO3) Raman band of HSO4(aq) mostly to hydrogen bonding of the proton in the H–OSO3 molecule with water in its environment. The AIMD simulations clarify assignments of Raman bands of H2SO40, specifically to νs(SO2) and νas(SO2) at ∼1140 cm−1 and ∼1370 cm−1, to νs(SO4) and νas(SO4) at ∼970 cm−1 and ∼1220 cm−1, and to νs(S–(OH)2) and νas(S–(OH)2) at ∼750 cm−1 and ∼840 cm−1. In addition, the experiments showed that diamond is not inert to H2SO4 at high temperatures as reduction of S(VI) to S(IV) produces SO20 and oxidation of diamond generates CO20.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
13.80%
发文量
183
审稿时长
19.7 weeks
期刊介绍: An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society. Submission of papers covering the following aspects of volcanology and geothermal research are encouraged: (1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations. (2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis. (3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization. (4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing. (5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts. (6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.
期刊最新文献
Audible and infrasonic waves generated during the 2022 Hunga eruption: Observations from across Aotearoa New Zealand Spatiotemporal characteristics of hydrothermal volatiles from the Tengchong volcanic field in the southeastern Tibetan Plateau: A probable constraint on the genesis of intraplate volcanism Evidences of the structures controlling the unrest in Campi Flegrei, Italy; Joint interpretation of ambient noise and local earthquake tomography Surface deformation caused by the unrest during 2002–2006 of the Changbaishan volcano in China The ghost plume phenomenon and its impact on zenith-facing remote sensing measurements of volcanic SO2 emission rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1