临床试验资格标准解析中的机器学习和自然语言处理:范围综述。

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Discovery Today Pub Date : 2024-08-19 DOI:10.1016/j.drudis.2024.104139
Klaudia Kantor , Mikołaj Morzy
{"title":"临床试验资格标准解析中的机器学习和自然语言处理:范围综述。","authors":"Klaudia Kantor ,&nbsp;Mikołaj Morzy","doi":"10.1016/j.drudis.2024.104139","DOIUrl":null,"url":null,"abstract":"<div><p>Automatic eligibility criteria parsing in clinical trials is crucial for cohort recruitment leading to data validity and trial completion. Recent years have witnessed an explosion of powerful machine learning (ML) and natural language processing (NLP) models that can streamline the patient accrual process. In this PRISMA-based scoping review, we comprehensively evaluate existing literature on the application of ML/NLP models for parsing clinical trial eligibility criteria. The review covers 9160 papers published between 2000 and 2024, with 88 publications subjected to data charting along 17 dimensions. Our review indicates insufficient use of state-of-the-art artificial intelligence (AI) models in the analysis of clinical protocols.</p></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"29 10","pages":"Article 104139"},"PeriodicalIF":6.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning and natural language processing in clinical trial eligibility criteria parsing: a scoping review\",\"authors\":\"Klaudia Kantor ,&nbsp;Mikołaj Morzy\",\"doi\":\"10.1016/j.drudis.2024.104139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automatic eligibility criteria parsing in clinical trials is crucial for cohort recruitment leading to data validity and trial completion. Recent years have witnessed an explosion of powerful machine learning (ML) and natural language processing (NLP) models that can streamline the patient accrual process. In this PRISMA-based scoping review, we comprehensively evaluate existing literature on the application of ML/NLP models for parsing clinical trial eligibility criteria. The review covers 9160 papers published between 2000 and 2024, with 88 publications subjected to data charting along 17 dimensions. Our review indicates insufficient use of state-of-the-art artificial intelligence (AI) models in the analysis of clinical protocols.</p></div>\",\"PeriodicalId\":301,\"journal\":{\"name\":\"Drug Discovery Today\",\"volume\":\"29 10\",\"pages\":\"Article 104139\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359644624002642\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644624002642","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

临床试验中的自动资格标准解析对于队列招募、数据有效性和试验完成至关重要。近年来,能够简化患者招募流程的强大机器学习(ML)和自然语言处理(NLP)模型层出不穷。在这篇基于 PRISMA 的范围综述中,我们全面评估了有关应用 ML/NLP 模型解析临床试验资格标准的现有文献。综述涵盖了 2000 年至 2024 年间发表的 9160 篇论文,其中 88 篇论文按照 17 个维度进行了数据图表分析。我们的综述表明,最先进的人工智能(AI)模型在临床方案分析中的应用并不充分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning and natural language processing in clinical trial eligibility criteria parsing: a scoping review

Automatic eligibility criteria parsing in clinical trials is crucial for cohort recruitment leading to data validity and trial completion. Recent years have witnessed an explosion of powerful machine learning (ML) and natural language processing (NLP) models that can streamline the patient accrual process. In this PRISMA-based scoping review, we comprehensively evaluate existing literature on the application of ML/NLP models for parsing clinical trial eligibility criteria. The review covers 9160 papers published between 2000 and 2024, with 88 publications subjected to data charting along 17 dimensions. Our review indicates insufficient use of state-of-the-art artificial intelligence (AI) models in the analysis of clinical protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
期刊最新文献
Redefining what it means to age - the impact to society and pharmaceutical industry. Mapping epilepsy biomarkers: a bibliometric and content analysis. Efficacy and challenges involving combination therapies in CLL. Strategic partnerships for AI-driven drug discovery: The role of relational dynamics. Antibody-drug conjugates: prospects for the next generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1