Heejoon Jeong, Donghee Kim, Dong Won Kim, Seungho Baek, Hyung-Chul Lee, Yusung Kim, Hyun Joo Ahn
{"title":"利用基于无创监测设备的深度学习模型预测术中低血压。","authors":"Heejoon Jeong, Donghee Kim, Dong Won Kim, Seungho Baek, Hyung-Chul Lee, Yusung Kim, Hyun Joo Ahn","doi":"10.1007/s10877-024-01206-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Intraoperative hypotension is associated with adverse outcomes. Predicting and proactively managing hypotension can reduce its incidence. Previously, hypotension prediction algorithms using artificial intelligence were developed for invasive arterial blood pressure monitors. This study tested whether routine non-invasive monitors could also predict intraoperative hypotension using deep learning algorithms.</p><p><strong>Methods: </strong>An open-source database of non-cardiac surgery patients ( https://vitadb.net/dataset ) was used to develop the deep learning algorithm. The algorithm was validated using external data obtained from a tertiary Korean hospital. Intraoperative hypotension was defined as a systolic blood pressure less than 90 mmHg. The input data included five monitors: non-invasive blood pressure, electrocardiography, photoplethysmography, capnography, and bispectral index. The primary outcome was the performance of the deep learning model as assessed by the area under the receiver operating characteristic curve (AUROC).</p><p><strong>Results: </strong>Data from 4754 and 421 patients were used for algorithm development and external validation, respectively. The fully connected model of Multi-head Attention architecture and the Globally Attentive Locally Recurrent model with Focal Loss function were able to predict intraoperative hypotension 5 min before its occurrence. The AUROC of the algorithm was 0.917 (95% confidence interval [CI], 0.915-0.918) for the original data and 0.833 (95% CI, 0.830-0.836) for the external validation data. Attention map, which quantified the contributions of each monitor, showed that our algorithm utilized data from each monitor with weights ranging from 8 to 22% for determining hypotension.</p><p><strong>Conclusions: </strong>A deep learning model utilizing multi-channel non-invasive monitors could predict intraoperative hypotension with high accuracy. Future prospective studies are needed to determine whether this model can assist clinicians in preventing hypotension in patients undergoing surgery with non-invasive monitoring.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":"1357-1365"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices.\",\"authors\":\"Heejoon Jeong, Donghee Kim, Dong Won Kim, Seungho Baek, Hyung-Chul Lee, Yusung Kim, Hyun Joo Ahn\",\"doi\":\"10.1007/s10877-024-01206-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Intraoperative hypotension is associated with adverse outcomes. Predicting and proactively managing hypotension can reduce its incidence. Previously, hypotension prediction algorithms using artificial intelligence were developed for invasive arterial blood pressure monitors. This study tested whether routine non-invasive monitors could also predict intraoperative hypotension using deep learning algorithms.</p><p><strong>Methods: </strong>An open-source database of non-cardiac surgery patients ( https://vitadb.net/dataset ) was used to develop the deep learning algorithm. The algorithm was validated using external data obtained from a tertiary Korean hospital. Intraoperative hypotension was defined as a systolic blood pressure less than 90 mmHg. The input data included five monitors: non-invasive blood pressure, electrocardiography, photoplethysmography, capnography, and bispectral index. The primary outcome was the performance of the deep learning model as assessed by the area under the receiver operating characteristic curve (AUROC).</p><p><strong>Results: </strong>Data from 4754 and 421 patients were used for algorithm development and external validation, respectively. The fully connected model of Multi-head Attention architecture and the Globally Attentive Locally Recurrent model with Focal Loss function were able to predict intraoperative hypotension 5 min before its occurrence. The AUROC of the algorithm was 0.917 (95% confidence interval [CI], 0.915-0.918) for the original data and 0.833 (95% CI, 0.830-0.836) for the external validation data. Attention map, which quantified the contributions of each monitor, showed that our algorithm utilized data from each monitor with weights ranging from 8 to 22% for determining hypotension.</p><p><strong>Conclusions: </strong>A deep learning model utilizing multi-channel non-invasive monitors could predict intraoperative hypotension with high accuracy. Future prospective studies are needed to determine whether this model can assist clinicians in preventing hypotension in patients undergoing surgery with non-invasive monitoring.</p>\",\"PeriodicalId\":15513,\"journal\":{\"name\":\"Journal of Clinical Monitoring and Computing\",\"volume\":\" \",\"pages\":\"1357-1365\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Monitoring and Computing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10877-024-01206-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-024-01206-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices.
Purpose: Intraoperative hypotension is associated with adverse outcomes. Predicting and proactively managing hypotension can reduce its incidence. Previously, hypotension prediction algorithms using artificial intelligence were developed for invasive arterial blood pressure monitors. This study tested whether routine non-invasive monitors could also predict intraoperative hypotension using deep learning algorithms.
Methods: An open-source database of non-cardiac surgery patients ( https://vitadb.net/dataset ) was used to develop the deep learning algorithm. The algorithm was validated using external data obtained from a tertiary Korean hospital. Intraoperative hypotension was defined as a systolic blood pressure less than 90 mmHg. The input data included five monitors: non-invasive blood pressure, electrocardiography, photoplethysmography, capnography, and bispectral index. The primary outcome was the performance of the deep learning model as assessed by the area under the receiver operating characteristic curve (AUROC).
Results: Data from 4754 and 421 patients were used for algorithm development and external validation, respectively. The fully connected model of Multi-head Attention architecture and the Globally Attentive Locally Recurrent model with Focal Loss function were able to predict intraoperative hypotension 5 min before its occurrence. The AUROC of the algorithm was 0.917 (95% confidence interval [CI], 0.915-0.918) for the original data and 0.833 (95% CI, 0.830-0.836) for the external validation data. Attention map, which quantified the contributions of each monitor, showed that our algorithm utilized data from each monitor with weights ranging from 8 to 22% for determining hypotension.
Conclusions: A deep learning model utilizing multi-channel non-invasive monitors could predict intraoperative hypotension with high accuracy. Future prospective studies are needed to determine whether this model can assist clinicians in preventing hypotension in patients undergoing surgery with non-invasive monitoring.
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.