Jing Li, Li Jiang, Kai Zhao, Yiting Tang, Xiangning Yuan, Yunfei Xu
{"title":"髓源性 TLR4-TRIF 信号通路在 LPS/D-GalN 诱导的急性肝衰竭中介导氧化应激。","authors":"Jing Li, Li Jiang, Kai Zhao, Yiting Tang, Xiangning Yuan, Yunfei Xu","doi":"10.1097/SHK.0000000000002438","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Background: Acute liver failure (ALF) is a severe clinical syndrome characterized by massive hepatocyte death in a short time due to viruses, drugs, alcohol, or other factors. Oxidative stress is an important pathogenic mechanism of ALF. LPS-induced internalization of toll-like receptor 4 (TLR4) and the subsequent activation of the toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) signaling pathway widely mediate inflammatory responses in a series of diseases. However, whether the TLR4-TRIF signaling pathway contributes to ALF by mediating oxidative stress processes remains unclear. Methods: An ALF mouse model was induced by lipopolysaccharide (LPS)/D-galactosamine (D-GalN). TLR4-TRIF systemic knockout mice and TLR4 conditional knockout mice were used to determine the role of the TLR4-TRIF signaling pathway in ALF. The effects of TLR4 or TRIF deficiency on oxidative stress were investigated. In addition, we examined the protective role of the clodronate liposomes (macrophage scavengers) and the antioxidant N-acetylcysteine (NAC) in ALF. Results: TLR4 or TRIF deficiency significantly alleviated LPS/D-GalN-induced lethality, hepatic dysfunction, and hepatic pathologic injury, which was dependent on myeloid-derived TLR4. Hence, macrophage clearance exhibits a similar protective effect. Mechanically, TLR4 or TRIF deficiency was observed to inhibit oxidative stress by increasing glutathione, while decreasing malondialdehyde, 8-hydroxy-2-deoxyguanosine, and γ-H2AX. Therefore, the pharmacologic antioxidant NAC exhibited significant hepato-protective effects. Conclusions: Targeting myeloid-derived TLR4-TRIF signaling pathway or antioxidant therapy may be a potential therapeutic direction to treat ALF.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"582-587"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MYELOID-DERIVED TLR4-TRIF SIGNALING PATHWAY MEDIATES OXIDATIVE STRESS IN LPS/D-GALN-INDUCED ACUTE LIVER FAILURE.\",\"authors\":\"Jing Li, Li Jiang, Kai Zhao, Yiting Tang, Xiangning Yuan, Yunfei Xu\",\"doi\":\"10.1097/SHK.0000000000002438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Background: Acute liver failure (ALF) is a severe clinical syndrome characterized by massive hepatocyte death in a short time due to viruses, drugs, alcohol, or other factors. Oxidative stress is an important pathogenic mechanism of ALF. LPS-induced internalization of toll-like receptor 4 (TLR4) and the subsequent activation of the toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) signaling pathway widely mediate inflammatory responses in a series of diseases. However, whether the TLR4-TRIF signaling pathway contributes to ALF by mediating oxidative stress processes remains unclear. Methods: An ALF mouse model was induced by lipopolysaccharide (LPS)/D-galactosamine (D-GalN). TLR4-TRIF systemic knockout mice and TLR4 conditional knockout mice were used to determine the role of the TLR4-TRIF signaling pathway in ALF. The effects of TLR4 or TRIF deficiency on oxidative stress were investigated. In addition, we examined the protective role of the clodronate liposomes (macrophage scavengers) and the antioxidant N-acetylcysteine (NAC) in ALF. Results: TLR4 or TRIF deficiency significantly alleviated LPS/D-GalN-induced lethality, hepatic dysfunction, and hepatic pathologic injury, which was dependent on myeloid-derived TLR4. Hence, macrophage clearance exhibits a similar protective effect. Mechanically, TLR4 or TRIF deficiency was observed to inhibit oxidative stress by increasing glutathione, while decreasing malondialdehyde, 8-hydroxy-2-deoxyguanosine, and γ-H2AX. Therefore, the pharmacologic antioxidant NAC exhibited significant hepato-protective effects. Conclusions: Targeting myeloid-derived TLR4-TRIF signaling pathway or antioxidant therapy may be a potential therapeutic direction to treat ALF.</p>\",\"PeriodicalId\":21667,\"journal\":{\"name\":\"SHOCK\",\"volume\":\" \",\"pages\":\"582-587\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHOCK\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SHK.0000000000002438\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002438","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Abstract: Background: Acute liver failure (ALF) is a severe clinical syndrome characterized by massive hepatocyte death in a short time due to viruses, drugs, alcohol, or other factors. Oxidative stress is an important pathogenic mechanism of ALF. LPS-induced internalization of toll-like receptor 4 (TLR4) and the subsequent activation of the toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) signaling pathway widely mediate inflammatory responses in a series of diseases. However, whether the TLR4-TRIF signaling pathway contributes to ALF by mediating oxidative stress processes remains unclear. Methods: An ALF mouse model was induced by lipopolysaccharide (LPS)/D-galactosamine (D-GalN). TLR4-TRIF systemic knockout mice and TLR4 conditional knockout mice were used to determine the role of the TLR4-TRIF signaling pathway in ALF. The effects of TLR4 or TRIF deficiency on oxidative stress were investigated. In addition, we examined the protective role of the clodronate liposomes (macrophage scavengers) and the antioxidant N-acetylcysteine (NAC) in ALF. Results: TLR4 or TRIF deficiency significantly alleviated LPS/D-GalN-induced lethality, hepatic dysfunction, and hepatic pathologic injury, which was dependent on myeloid-derived TLR4. Hence, macrophage clearance exhibits a similar protective effect. Mechanically, TLR4 or TRIF deficiency was observed to inhibit oxidative stress by increasing glutathione, while decreasing malondialdehyde, 8-hydroxy-2-deoxyguanosine, and γ-H2AX. Therefore, the pharmacologic antioxidant NAC exhibited significant hepato-protective effects. Conclusions: Targeting myeloid-derived TLR4-TRIF signaling pathway or antioxidant therapy may be a potential therapeutic direction to treat ALF.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.