使用[001]取向多晶半金属 Heusler 合金 Co2FeGa0.5Ge0.5 和 CoFe 双层电极提高 CPP-GMR 读头传感器的性能。

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science and Technology of Advanced Materials Pub Date : 2024-08-14 eCollection Date: 2024-01-01 DOI:10.1080/14686996.2024.2388503
Dolly Taparia, Taisuke Sasaki, Tomoya Nakatani, Hirofumi Suto, Yoshio Miura, Zehao Li, Varun Kumar Kushwaha, Kazuumi Inubushi, Shinto Ichikawa, Katsuyuki Nakada, Tomoyuki Sasaki, Seiji Mitani, Yuya Sakuraba
{"title":"使用[001]取向多晶半金属 Heusler 合金 Co2FeGa0.5Ge0.5 和 CoFe 双层电极提高 CPP-GMR 读头传感器的性能。","authors":"Dolly Taparia, Taisuke Sasaki, Tomoya Nakatani, Hirofumi Suto, Yoshio Miura, Zehao Li, Varun Kumar Kushwaha, Kazuumi Inubushi, Shinto Ichikawa, Katsuyuki Nakada, Tomoyuki Sasaki, Seiji Mitani, Yuya Sakuraba","doi":"10.1080/14686996.2024.2388503","DOIUrl":null,"url":null,"abstract":"<p><p>A current-perpendicular-to-plane giant magnetoresistive (CPP-GMR) device with a half-metallic electrode is one of the most promising candidates of next-generation read head for hard disk drive. In this study, we fabricate [001]-oriented polycrystalline CPP-GMR devices with the normal ferromagnet (NFM) CoFe/half-metallic ferromagnet (HMFM) Co<sub>2</sub>FeGa<sub>0.5</sub>Ge<sub>0.5</sub> (CFGG) bilayer electrodes to enhance the magnetoresistance (MR) ratio by large interfacial spin-dependent scattering at the NFM/HMFM interface. The CoFe/CFGG bilayer electrode provides the additional large interfacial spin-dependent scattering and achieves high <i>MR</i> ratio of 22.7% with the CoFe(4.5 nm)/CFGG(2.5 nm) bilayer electrodes, which is almost three(two) times larger than the <i>MR</i> ratio with the single CoFe(CFGG) (7 nm) electrodes. The bias voltage dependent study revealed an additional advantage of increasing the output voltage |Δ<i>V</i>| by using the CoFe/CFGG bilayer due to the improvement of the endurance against spin-transfer torque under high bias current. A maximum output voltage <math> <mrow> <msub> <mfenced><mrow><mi>Δ</mi> <mi>V</mi></mrow> </mfenced> <mrow> <mrow><mrow><mi>max</mi></mrow> </mrow> </mrow> </msub> </mrow> </math> of 6.5 mV was obtained with the CoFe(5.5 nm)/CFGG(1.5 nm) electrodes, which is the highest ever reported in the CPP-GMR devices with a uniform metallic spacer including high-quality epitaxial devices.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2388503"},"PeriodicalIF":7.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improvement in CPP-GMR read head sensor performance using [001]-oriented polycrystalline half-metallic Heusler alloy Co<sub>2</sub>FeGa<sub>0.5</sub>Ge<sub>0.5</sub> and CoFe bilayer electrode.\",\"authors\":\"Dolly Taparia, Taisuke Sasaki, Tomoya Nakatani, Hirofumi Suto, Yoshio Miura, Zehao Li, Varun Kumar Kushwaha, Kazuumi Inubushi, Shinto Ichikawa, Katsuyuki Nakada, Tomoyuki Sasaki, Seiji Mitani, Yuya Sakuraba\",\"doi\":\"10.1080/14686996.2024.2388503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A current-perpendicular-to-plane giant magnetoresistive (CPP-GMR) device with a half-metallic electrode is one of the most promising candidates of next-generation read head for hard disk drive. In this study, we fabricate [001]-oriented polycrystalline CPP-GMR devices with the normal ferromagnet (NFM) CoFe/half-metallic ferromagnet (HMFM) Co<sub>2</sub>FeGa<sub>0.5</sub>Ge<sub>0.5</sub> (CFGG) bilayer electrodes to enhance the magnetoresistance (MR) ratio by large interfacial spin-dependent scattering at the NFM/HMFM interface. The CoFe/CFGG bilayer electrode provides the additional large interfacial spin-dependent scattering and achieves high <i>MR</i> ratio of 22.7% with the CoFe(4.5 nm)/CFGG(2.5 nm) bilayer electrodes, which is almost three(two) times larger than the <i>MR</i> ratio with the single CoFe(CFGG) (7 nm) electrodes. The bias voltage dependent study revealed an additional advantage of increasing the output voltage |Δ<i>V</i>| by using the CoFe/CFGG bilayer due to the improvement of the endurance against spin-transfer torque under high bias current. A maximum output voltage <math> <mrow> <msub> <mfenced><mrow><mi>Δ</mi> <mi>V</mi></mrow> </mfenced> <mrow> <mrow><mrow><mi>max</mi></mrow> </mrow> </mrow> </msub> </mrow> </math> of 6.5 mV was obtained with the CoFe(5.5 nm)/CFGG(1.5 nm) electrodes, which is the highest ever reported in the CPP-GMR devices with a uniform metallic spacer including high-quality epitaxial devices.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"25 1\",\"pages\":\"2388503\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2388503\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2388503","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

带有半金属电极的电流垂直面巨磁阻(CPP-GMR)器件是下一代硬盘驱动器读取头最有前途的候选器件之一。在这项研究中,我们用普通铁磁体(NFM)CoFe/半金属铁磁体(HMFM)Co2FeGa0.5Ge0.5(CFGG)双层电极制造了[001]取向多晶 CPP-GMR 器件,通过在 NFM/HMFM 界面产生大的界面自旋散射来提高磁阻(MR)比。CoFe/CFGG 双层电极提供了额外的大界面自旋散射,CoFe(4.5 nm)/CFGG(2.5 nm)双层电极的磁阻比高达 22.7%,几乎是单 CoFe(CFGG)(7 nm)电极磁阻比的三倍(两倍)。与偏置电压相关的研究表明,使用 CoFe/CFGG 双电层还具有提高输出电压 |ΔV| 的额外优势,这是因为在高偏置电流下,自旋转移扭矩的耐受性得到了改善。CoFe(5.5 nm)/CFGG(1.5 nm)电极获得了 6.5 mV 的最大输出电压 Δ V max,这是迄今为止在具有均匀金属间隔(包括高质量外延器件)的 CPP-GMR 器件中所报道的最高输出电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement in CPP-GMR read head sensor performance using [001]-oriented polycrystalline half-metallic Heusler alloy Co2FeGa0.5Ge0.5 and CoFe bilayer electrode.

A current-perpendicular-to-plane giant magnetoresistive (CPP-GMR) device with a half-metallic electrode is one of the most promising candidates of next-generation read head for hard disk drive. In this study, we fabricate [001]-oriented polycrystalline CPP-GMR devices with the normal ferromagnet (NFM) CoFe/half-metallic ferromagnet (HMFM) Co2FeGa0.5Ge0.5 (CFGG) bilayer electrodes to enhance the magnetoresistance (MR) ratio by large interfacial spin-dependent scattering at the NFM/HMFM interface. The CoFe/CFGG bilayer electrode provides the additional large interfacial spin-dependent scattering and achieves high MR ratio of 22.7% with the CoFe(4.5 nm)/CFGG(2.5 nm) bilayer electrodes, which is almost three(two) times larger than the MR ratio with the single CoFe(CFGG) (7 nm) electrodes. The bias voltage dependent study revealed an additional advantage of increasing the output voltage |ΔV| by using the CoFe/CFGG bilayer due to the improvement of the endurance against spin-transfer torque under high bias current. A maximum output voltage Δ V max of 6.5 mV was obtained with the CoFe(5.5 nm)/CFGG(1.5 nm) electrodes, which is the highest ever reported in the CPP-GMR devices with a uniform metallic spacer including high-quality epitaxial devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
期刊最新文献
Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena A comprehensive data network for data-driven study of battery materials Recent progress on polymeric probes for formaldehyde sensing: a comprehensive review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1