David M Dolivo, Adrian E Rodrigues, Lauren S Sun, Thomas A Mustoe, Seok Jong Hong, Robert D Galiano
{"title":"皮肤纤维化伴随着分泌型皱纹相关蛋白-2 的表达增加。","authors":"David M Dolivo, Adrian E Rodrigues, Lauren S Sun, Thomas A Mustoe, Seok Jong Hong, Robert D Galiano","doi":"10.1111/wrr.13211","DOIUrl":null,"url":null,"abstract":"<p><p>Dermal fibrosis is a consequence of damage to skin and is accompanied by dysfunction and cosmetic disfigurement. Improved understanding of the pathological factors driving skin fibrosis is critical to development of therapeutic modalities. Here, we describe that the Wnt signalling antagonist SFRP2 is upregulated in organotypic keratinocyte cultures upon experimental reduced hydration, a model that simulates the aberrant epidermal barrier state characteristic of several skin pathologies, including those that manifest in development of fibrosis. Consistent with this, we find that SFRP2 is overexpressed in both the dermis and epidermis of human hypertrophic scar tissue and lesional tissue of a mouse scleroderma model. Knockdown of SFRP2 expression in human fibroblasts antagonises proliferation and myofibroblast differentiation, including deposition of type I collagen, suggesting that SFRP2 signalling in fibroblasts may contribute to propagation of fibrosis in hypertrophic scar, as well as in other clinical indications characterised by skin fibrosis.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"720-724"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin fibrosis is accompanied by increased expression of secreted frizzled-related protein-2.\",\"authors\":\"David M Dolivo, Adrian E Rodrigues, Lauren S Sun, Thomas A Mustoe, Seok Jong Hong, Robert D Galiano\",\"doi\":\"10.1111/wrr.13211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dermal fibrosis is a consequence of damage to skin and is accompanied by dysfunction and cosmetic disfigurement. Improved understanding of the pathological factors driving skin fibrosis is critical to development of therapeutic modalities. Here, we describe that the Wnt signalling antagonist SFRP2 is upregulated in organotypic keratinocyte cultures upon experimental reduced hydration, a model that simulates the aberrant epidermal barrier state characteristic of several skin pathologies, including those that manifest in development of fibrosis. Consistent with this, we find that SFRP2 is overexpressed in both the dermis and epidermis of human hypertrophic scar tissue and lesional tissue of a mouse scleroderma model. Knockdown of SFRP2 expression in human fibroblasts antagonises proliferation and myofibroblast differentiation, including deposition of type I collagen, suggesting that SFRP2 signalling in fibroblasts may contribute to propagation of fibrosis in hypertrophic scar, as well as in other clinical indications characterised by skin fibrosis.</p>\",\"PeriodicalId\":23864,\"journal\":{\"name\":\"Wound Repair and Regeneration\",\"volume\":\" \",\"pages\":\"720-724\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wound Repair and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/wrr.13211\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.13211","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Skin fibrosis is accompanied by increased expression of secreted frizzled-related protein-2.
Dermal fibrosis is a consequence of damage to skin and is accompanied by dysfunction and cosmetic disfigurement. Improved understanding of the pathological factors driving skin fibrosis is critical to development of therapeutic modalities. Here, we describe that the Wnt signalling antagonist SFRP2 is upregulated in organotypic keratinocyte cultures upon experimental reduced hydration, a model that simulates the aberrant epidermal barrier state characteristic of several skin pathologies, including those that manifest in development of fibrosis. Consistent with this, we find that SFRP2 is overexpressed in both the dermis and epidermis of human hypertrophic scar tissue and lesional tissue of a mouse scleroderma model. Knockdown of SFRP2 expression in human fibroblasts antagonises proliferation and myofibroblast differentiation, including deposition of type I collagen, suggesting that SFRP2 signalling in fibroblasts may contribute to propagation of fibrosis in hypertrophic scar, as well as in other clinical indications characterised by skin fibrosis.
期刊介绍:
Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others.
Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.