{"title":"Apelin-13 通过抑制子宫内膜上皮细胞的上皮-间质转化和促进血管生成来缓解宫腔内粘连。","authors":"Qun Zhao, Yuyan Li, Xingping Zhao, Jiahui Zhou, Yifan Zheng, Zhiyue Li","doi":"10.1007/s13577-024-01117-3","DOIUrl":null,"url":null,"abstract":"<p><p>Intrauterine adhesion (IUA) is a common complication of surgical manipulation of the uterine cavity such as abortion. The pathology of IUA is characterized by fibrosis, but the pathogenesis is not fully understood. The function of Apelin-13 in IUA and related mechanisms were investigated in this study. The IUA rat model was established. The pathological changes and fibrosis degree of rat uterine tissues were detected by HE and Masson staining after intraperitoneal injection of Apelin-13. Epithelial-mesenchymal transition (EMT) of endometrial epithelial cells and endothelial-mesenchymal transition (EnMT) of vein endothelial cells were induced by TGF-β1. Tube-forming assay using HUVEC was implemented to detect the effect of Apelin-13 upon angiogenesis. IHC staining, immunofluorescence staining, and Western blot were conducted to detect the expression levels of EMT markers, angiogenesis, and key proteins of the TGF-β1/Smad signaling. Apelin-13 significantly alleviated IUA and fibrosis, and increased endometrial thickness and gland number in IUA rats. In addition, Apelin-13 significantly reversed EMT and EnMT induced by IUA modeling and TGF-β1, promoted the tube-forming ability of HUVEC, and up-regulated the expression of angiogenesis-related proteins. Mechanistically, Apelin-13 significantly suppressed smad2/3 phosphorylation and inhibited the TGF-β1/Smad signaling via its receptor APJ. Apelin-13 might alleviate IUA via repressing the TGF-β1/Smad pathway and is expected to be a potent therapeutic option for the clinical treatment of IUA.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apelin-13 alleviates intrauterine adhesion by inhibiting epithelial-mesenchymal transition of endometrial epithelial cells and promoting angiogenesis.\",\"authors\":\"Qun Zhao, Yuyan Li, Xingping Zhao, Jiahui Zhou, Yifan Zheng, Zhiyue Li\",\"doi\":\"10.1007/s13577-024-01117-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intrauterine adhesion (IUA) is a common complication of surgical manipulation of the uterine cavity such as abortion. The pathology of IUA is characterized by fibrosis, but the pathogenesis is not fully understood. The function of Apelin-13 in IUA and related mechanisms were investigated in this study. The IUA rat model was established. The pathological changes and fibrosis degree of rat uterine tissues were detected by HE and Masson staining after intraperitoneal injection of Apelin-13. Epithelial-mesenchymal transition (EMT) of endometrial epithelial cells and endothelial-mesenchymal transition (EnMT) of vein endothelial cells were induced by TGF-β1. Tube-forming assay using HUVEC was implemented to detect the effect of Apelin-13 upon angiogenesis. IHC staining, immunofluorescence staining, and Western blot were conducted to detect the expression levels of EMT markers, angiogenesis, and key proteins of the TGF-β1/Smad signaling. Apelin-13 significantly alleviated IUA and fibrosis, and increased endometrial thickness and gland number in IUA rats. In addition, Apelin-13 significantly reversed EMT and EnMT induced by IUA modeling and TGF-β1, promoted the tube-forming ability of HUVEC, and up-regulated the expression of angiogenesis-related proteins. Mechanistically, Apelin-13 significantly suppressed smad2/3 phosphorylation and inhibited the TGF-β1/Smad signaling via its receptor APJ. Apelin-13 might alleviate IUA via repressing the TGF-β1/Smad pathway and is expected to be a potent therapeutic option for the clinical treatment of IUA.</p>\",\"PeriodicalId\":49194,\"journal\":{\"name\":\"Human Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-024-01117-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01117-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Apelin-13 alleviates intrauterine adhesion by inhibiting epithelial-mesenchymal transition of endometrial epithelial cells and promoting angiogenesis.
Intrauterine adhesion (IUA) is a common complication of surgical manipulation of the uterine cavity such as abortion. The pathology of IUA is characterized by fibrosis, but the pathogenesis is not fully understood. The function of Apelin-13 in IUA and related mechanisms were investigated in this study. The IUA rat model was established. The pathological changes and fibrosis degree of rat uterine tissues were detected by HE and Masson staining after intraperitoneal injection of Apelin-13. Epithelial-mesenchymal transition (EMT) of endometrial epithelial cells and endothelial-mesenchymal transition (EnMT) of vein endothelial cells were induced by TGF-β1. Tube-forming assay using HUVEC was implemented to detect the effect of Apelin-13 upon angiogenesis. IHC staining, immunofluorescence staining, and Western blot were conducted to detect the expression levels of EMT markers, angiogenesis, and key proteins of the TGF-β1/Smad signaling. Apelin-13 significantly alleviated IUA and fibrosis, and increased endometrial thickness and gland number in IUA rats. In addition, Apelin-13 significantly reversed EMT and EnMT induced by IUA modeling and TGF-β1, promoted the tube-forming ability of HUVEC, and up-regulated the expression of angiogenesis-related proteins. Mechanistically, Apelin-13 significantly suppressed smad2/3 phosphorylation and inhibited the TGF-β1/Smad signaling via its receptor APJ. Apelin-13 might alleviate IUA via repressing the TGF-β1/Smad pathway and is expected to be a potent therapeutic option for the clinical treatment of IUA.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.