海洋太阳鱼(Mola mola)咽齿的功能形态。

4区 医学 Q2 Agricultural and Biological Sciences Anatomical Record Pub Date : 2024-08-19 DOI:10.1002/ar.25531
Benjamin Flaum, Michael J Blumer, Mason N Dean, Laura J Ekstrom
{"title":"海洋太阳鱼(Mola mola)咽齿的功能形态。","authors":"Benjamin Flaum, Michael J Blumer, Mason N Dean, Laura J Ekstrom","doi":"10.1002/ar.25531","DOIUrl":null,"url":null,"abstract":"<p><p>Many fish use a set of pharyngeal jaws in their throat to aid in prey capture and processing, particularly of large or complex prey. In this study-combining dissection, CT scanning, histology, and performance testing-we demonstrate a novel use of pharyngeal teeth in the ocean sunfish (Mola mola), a species for which pharyngeal jaw anatomy had not been described. We show that sunfish possesses only dorsal pharyngeal jaws where, in contrast to their beaklike oral teeth, teeth are recurved spikes, arranged in three loosely connected rows. Fang-like pharyngeal teeth were tightly socketed in the skeletal tissue, with shorter, incompletely-formed teeth erupting between, suggesting tooth replacement. Trichrome staining revealed teeth anchored into their sockets via a combination of collagen bundles originating from the jaw connective tissue and mineralized trabeculae extending from the teeth bases. In resting position, teeth are nearly covered by soft tissue; however, manipulation of a straplike muscle, running transversely on the dorsal jaw face, everted teeth like a cat's claws. Adult sunfish suction feed almost exclusively on gelatinous prey (e.g., jellyfish) and have been observed to jet water during feeding and other activities; flume experiments simulating jetting behavior demonstrated adult teeth caught simulated gelatinous prey with 70%-100% success, with the teeth immobile in their sockets, even at 50x the jetting force, demonstrating high safety factor. We propose that sunfish pharyngeal teeth function as an efficient retention cage for mechanically challenging prey, a curious evolutionary convergence with the throat spikes of divergent taxa that employ spitting and jetting.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional morphology of the pharyngeal teeth of the ocean sunfish, Mola mola.\",\"authors\":\"Benjamin Flaum, Michael J Blumer, Mason N Dean, Laura J Ekstrom\",\"doi\":\"10.1002/ar.25531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many fish use a set of pharyngeal jaws in their throat to aid in prey capture and processing, particularly of large or complex prey. In this study-combining dissection, CT scanning, histology, and performance testing-we demonstrate a novel use of pharyngeal teeth in the ocean sunfish (Mola mola), a species for which pharyngeal jaw anatomy had not been described. We show that sunfish possesses only dorsal pharyngeal jaws where, in contrast to their beaklike oral teeth, teeth are recurved spikes, arranged in three loosely connected rows. Fang-like pharyngeal teeth were tightly socketed in the skeletal tissue, with shorter, incompletely-formed teeth erupting between, suggesting tooth replacement. Trichrome staining revealed teeth anchored into their sockets via a combination of collagen bundles originating from the jaw connective tissue and mineralized trabeculae extending from the teeth bases. In resting position, teeth are nearly covered by soft tissue; however, manipulation of a straplike muscle, running transversely on the dorsal jaw face, everted teeth like a cat's claws. Adult sunfish suction feed almost exclusively on gelatinous prey (e.g., jellyfish) and have been observed to jet water during feeding and other activities; flume experiments simulating jetting behavior demonstrated adult teeth caught simulated gelatinous prey with 70%-100% success, with the teeth immobile in their sockets, even at 50x the jetting force, demonstrating high safety factor. We propose that sunfish pharyngeal teeth function as an efficient retention cage for mechanically challenging prey, a curious evolutionary convergence with the throat spikes of divergent taxa that employ spitting and jetting.</p>\",\"PeriodicalId\":50793,\"journal\":{\"name\":\"Anatomical Record\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.25531\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25531","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

许多鱼类在喉部使用一组咽颚来帮助捕捉和处理猎物,尤其是大型或复杂的猎物。在这项研究中,我们结合了解剖、CT 扫描、组织学和性能测试,展示了海洋太阳鱼(Mola mola)咽齿的一种新用途。我们发现太阳鱼只有背侧的咽颚,与喙状口腔牙齿不同的是,太阳鱼的咽颚牙齿是下弯的穗状牙齿,排列成松散的三排。獠牙状的咽部牙齿紧紧地嵌在骨骼组织中,中间萌发出较短的、不完全成形的牙齿,这表明牙齿是替换的。三色染色显示,牙齿通过源自颌骨结缔组织的胶原束和从牙齿基部延伸出来的矿化小梁固定在牙槽中。在静止状态下,牙齿几乎被软组织覆盖;然而,在颌面背侧横向分布的带状肌肉的作用下,牙齿会像猫爪一样张开。成年太阳鱼几乎只吸食胶状猎物(如水母),并被观察到在进食和其他活动中喷射水流;模拟喷射行为的水槽实验表明,成鱼牙齿捕捉模拟胶状猎物的成功率为 70%-100%,即使在 50 倍喷射力的情况下,牙齿也不会在牙槽中移动,这表明安全系数很高。我们认为,太阳鱼的咽齿对具有机械挑战性的猎物起着高效滞留笼的作用,这与采用吐唾和喷射的不同类群的喉钉在进化上有奇特的趋同性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional morphology of the pharyngeal teeth of the ocean sunfish, Mola mola.

Many fish use a set of pharyngeal jaws in their throat to aid in prey capture and processing, particularly of large or complex prey. In this study-combining dissection, CT scanning, histology, and performance testing-we demonstrate a novel use of pharyngeal teeth in the ocean sunfish (Mola mola), a species for which pharyngeal jaw anatomy had not been described. We show that sunfish possesses only dorsal pharyngeal jaws where, in contrast to their beaklike oral teeth, teeth are recurved spikes, arranged in three loosely connected rows. Fang-like pharyngeal teeth were tightly socketed in the skeletal tissue, with shorter, incompletely-formed teeth erupting between, suggesting tooth replacement. Trichrome staining revealed teeth anchored into their sockets via a combination of collagen bundles originating from the jaw connective tissue and mineralized trabeculae extending from the teeth bases. In resting position, teeth are nearly covered by soft tissue; however, manipulation of a straplike muscle, running transversely on the dorsal jaw face, everted teeth like a cat's claws. Adult sunfish suction feed almost exclusively on gelatinous prey (e.g., jellyfish) and have been observed to jet water during feeding and other activities; flume experiments simulating jetting behavior demonstrated adult teeth caught simulated gelatinous prey with 70%-100% success, with the teeth immobile in their sockets, even at 50x the jetting force, demonstrating high safety factor. We propose that sunfish pharyngeal teeth function as an efficient retention cage for mechanically challenging prey, a curious evolutionary convergence with the throat spikes of divergent taxa that employ spitting and jetting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anatomical Record
Anatomical Record Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
4.30
自引率
0.00%
发文量
0
期刊介绍: The Anatomical Record
期刊最新文献
Correction to "Inhibition of ferroptosis of renal tubular cells with total flavones of Abelmoschus manihot alleviates diabetic tubulopathy". Histochemical indications for a chemically complex signal produced by the cervical gill slit gland of the pygmy sperm whale (Kogia breviceps). Exploring developmental changes in femoral midneck cross-sectional properties. Hindlimb locomotor biomechanics of the derived therizinosaur Nothronychus: Functional changes in the line to birds and convergence with large-bodied neornitheans. Pseudosuchia: Masters of survival and diversification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1