[基于 LSTM-XGBoost 的高血压患者 RR 间期时间序列预测方法]。

Wenjie Yu, Hongwen Chen, Hongliang Qi, Zhilin Pan, Hanwei Li, Debin Hu
{"title":"[基于 LSTM-XGBoost 的高血压患者 RR 间期时间序列预测方法]。","authors":"Wenjie Yu, Hongwen Chen, Hongliang Qi, Zhilin Pan, Hanwei Li, Debin Hu","doi":"10.12455/j.issn.1671-7104.230728","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The prediction of RR intervals in hypertensive patients can help clinicians to analyze and warn patients' heart condition.</p><p><strong>Methods: </strong>Using 8 patients' data as samples, the RR intervals of patients were predicted by long short-term memory network (LSTM) and gradient lift tree (XGBoost), and the prediction results of the two models were combined by the inverse variance method to overcome the disadvantage of single model prediction.</p><p><strong>Results: </strong>Compared with the single model, the proposed combined model had a different degree of improvement in the prediction of RR intervals in 8 patients.</p><p><strong>Conclusion: </strong>LSTM-XGBoost model provides a method for predicting RR intervals in hypertensive patients, which has potential clinical feasibility.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[LSTM-XGBoost Based RR Intervals Time Series Prediction Method in Hypertensive Patients].\",\"authors\":\"Wenjie Yu, Hongwen Chen, Hongliang Qi, Zhilin Pan, Hanwei Li, Debin Hu\",\"doi\":\"10.12455/j.issn.1671-7104.230728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The prediction of RR intervals in hypertensive patients can help clinicians to analyze and warn patients' heart condition.</p><p><strong>Methods: </strong>Using 8 patients' data as samples, the RR intervals of patients were predicted by long short-term memory network (LSTM) and gradient lift tree (XGBoost), and the prediction results of the two models were combined by the inverse variance method to overcome the disadvantage of single model prediction.</p><p><strong>Results: </strong>Compared with the single model, the proposed combined model had a different degree of improvement in the prediction of RR intervals in 8 patients.</p><p><strong>Conclusion: </strong>LSTM-XGBoost model provides a method for predicting RR intervals in hypertensive patients, which has potential clinical feasibility.</p>\",\"PeriodicalId\":52535,\"journal\":{\"name\":\"中国医疗器械杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国医疗器械杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12455/j.issn.1671-7104.230728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.230728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的预测高血压患者的RR间期有助于临床医生分析和预警患者的心脏状况:以 8 例患者数据为样本,采用长短期记忆网络(LSTM)和梯度提升树(XGBoost)对患者的 RR 间期进行预测,并通过反方差法将两种模型的预测结果进行合并,以克服单一模型预测的缺点:结果:与单一模型相比,所提出的组合模型在预测8名患者的RR间期方面有不同程度的改善:LSTM-XGBoost模型为预测高血压患者的RR间期提供了一种方法,具有潜在的临床可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[LSTM-XGBoost Based RR Intervals Time Series Prediction Method in Hypertensive Patients].

Objective: The prediction of RR intervals in hypertensive patients can help clinicians to analyze and warn patients' heart condition.

Methods: Using 8 patients' data as samples, the RR intervals of patients were predicted by long short-term memory network (LSTM) and gradient lift tree (XGBoost), and the prediction results of the two models were combined by the inverse variance method to overcome the disadvantage of single model prediction.

Results: Compared with the single model, the proposed combined model had a different degree of improvement in the prediction of RR intervals in 8 patients.

Conclusion: LSTM-XGBoost model provides a method for predicting RR intervals in hypertensive patients, which has potential clinical feasibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国医疗器械杂志
中国医疗器械杂志 Medicine-Medicine (all)
CiteScore
0.40
自引率
0.00%
发文量
8086
期刊介绍:
期刊最新文献
[12-Lead Holter Integrated with Sleep Monitoring Module]. [Bowel Sounds Detection Method Based on ResNet-BiLSTM and Attention Mechanism]. [Clinical Application of Equivalent Uniform Dose in Intensity-Modulated Rotational Radiotherapy Based on Eclipse TPS]. [Clinical Validation of a Prototype Smart Non-Invasive Pregnancy Glucose Monitor]. [Clinical Validation Study of Deep Learning-Generated Magnetic Resonance Images].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1