开发用于芒果叶病检测和分类的鲁棒 CNN 模型:精准农业方法

IF 2.3 Q1 AGRICULTURE, MULTIDISCIPLINARY ACS agricultural science & technology Pub Date : 2024-07-16 DOI:10.1021/acsagscitech.4c0012210.1021/acsagscitech.4c00122
Amit Kumar Pathak, Ponkaj Saikia, Sanghamitra Dutta, Subrata Sinha and Subrata Ghosh*, 
{"title":"开发用于芒果叶病检测和分类的鲁棒 CNN 模型:精准农业方法","authors":"Amit Kumar Pathak,&nbsp;Ponkaj Saikia,&nbsp;Sanghamitra Dutta,&nbsp;Subrata Sinha and Subrata Ghosh*,&nbsp;","doi":"10.1021/acsagscitech.4c0012210.1021/acsagscitech.4c00122","DOIUrl":null,"url":null,"abstract":"<p >In recent years, convolutional neural network (CNN) models and deep learning techniques have gained significant attention for plant disease detection. Despite advances, achieving high accuracy across diverse classes remains challenging. Existing CNN models have demonstrated moderate accuracy in classifying a limited number of mango leaf diseases. So, a crucial necessity exists to broaden the scope of precision. Our investigation introduces a CNN model that achieves an impressive 99% accuracy across eight classes of mango leaf diseases. Using advanced data processing, image augmentation, and feature extraction methodologies rooted in artificial intelligence and deep learning, we systematically explored over 20 CNN architectures and various hyperparameters to develop a robust model. Given the global significance of mango cultivation, our model was rigorously trained and tested for reliability. Detailed results and materials are available on GitHub. Additionally, we integrated our CNN model into an Android app, “Mango-SCN”, designed for easy use in managing mango leaf diseases, accessible even to nonexperts.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 8","pages":"806–817 806–817"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Robust CNN Model for Mango Leaf Disease Detection and Classification: A Precision Agriculture Approach\",\"authors\":\"Amit Kumar Pathak,&nbsp;Ponkaj Saikia,&nbsp;Sanghamitra Dutta,&nbsp;Subrata Sinha and Subrata Ghosh*,&nbsp;\",\"doi\":\"10.1021/acsagscitech.4c0012210.1021/acsagscitech.4c00122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, convolutional neural network (CNN) models and deep learning techniques have gained significant attention for plant disease detection. Despite advances, achieving high accuracy across diverse classes remains challenging. Existing CNN models have demonstrated moderate accuracy in classifying a limited number of mango leaf diseases. So, a crucial necessity exists to broaden the scope of precision. Our investigation introduces a CNN model that achieves an impressive 99% accuracy across eight classes of mango leaf diseases. Using advanced data processing, image augmentation, and feature extraction methodologies rooted in artificial intelligence and deep learning, we systematically explored over 20 CNN architectures and various hyperparameters to develop a robust model. Given the global significance of mango cultivation, our model was rigorously trained and tested for reliability. Detailed results and materials are available on GitHub. Additionally, we integrated our CNN model into an Android app, “Mango-SCN”, designed for easy use in managing mango leaf diseases, accessible even to nonexperts.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"4 8\",\"pages\":\"806–817 806–817\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.4c00122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.4c00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,卷积神经网络(CNN)模型和深度学习技术在植物病害检测方面获得了极大关注。尽管取得了进步,但要在不同类别中实现高准确率仍具有挑战性。现有的卷积神经网络模型在对数量有限的芒果叶病害进行分类时表现出了适度的准确性。因此,扩大精确度范围至关重要。我们的研究引入了一个 CNN 模型,该模型在八类芒果叶病中达到了令人印象深刻的 99% 的准确率。通过使用植根于人工智能和深度学习的先进数据处理、图像增强和特征提取方法,我们系统地探索了 20 多种 CNN 架构和各种超参数,从而开发出一个强大的模型。鉴于芒果种植在全球的重要性,我们对模型进行了严格的训练和可靠性测试。详细结果和材料可在 GitHub 上查看。此外,我们还将我们的 CNN 模型集成到了一个安卓应用程序 "Mango-SCN "中,旨在方便管理芒果叶病,即使非专业人士也能使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Robust CNN Model for Mango Leaf Disease Detection and Classification: A Precision Agriculture Approach

In recent years, convolutional neural network (CNN) models and deep learning techniques have gained significant attention for plant disease detection. Despite advances, achieving high accuracy across diverse classes remains challenging. Existing CNN models have demonstrated moderate accuracy in classifying a limited number of mango leaf diseases. So, a crucial necessity exists to broaden the scope of precision. Our investigation introduces a CNN model that achieves an impressive 99% accuracy across eight classes of mango leaf diseases. Using advanced data processing, image augmentation, and feature extraction methodologies rooted in artificial intelligence and deep learning, we systematically explored over 20 CNN architectures and various hyperparameters to develop a robust model. Given the global significance of mango cultivation, our model was rigorously trained and tested for reliability. Detailed results and materials are available on GitHub. Additionally, we integrated our CNN model into an Android app, “Mango-SCN”, designed for easy use in managing mango leaf diseases, accessible even to nonexperts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Sustainable Alternatives to Silicone in Pest Management: A Comparative Study of Biodegradable Oleogel Pheromone Dispensers for Plodia interpunctella Innovative JetCutter Technology to Scale the Production of a Solid Bacillus pumilus Biofertilizer to Transit to Sustainable Agriculture Development of a Novel Attractant-Baited Sticky Board and Its Application for the Highly Efficient Control of Aleurocanthus spiniferus in Tea Plantations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1