图案表面之间的液桥动力学

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED Physica D: Nonlinear Phenomena Pub Date : 2024-08-12 DOI:10.1016/j.physd.2024.134322
{"title":"图案表面之间的液桥动力学","authors":"","doi":"10.1016/j.physd.2024.134322","DOIUrl":null,"url":null,"abstract":"<div><p>We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002732/pdfft?md5=f118fd77314ddf0d2d7214a4b8122af4&pid=1-s2.0-S0167278924002732-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics of liquid bridges between patterned surfaces\",\"authors\":\"\",\"doi\":\"10.1016/j.physd.2024.134322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.</p></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002732/pdfft?md5=f118fd77314ddf0d2d7214a4b8122af4&pid=1-s2.0-S0167278924002732-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002732\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002732","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们采用多组分伪势晶格玻尔兹曼方法,模拟了横跨由亲水和疏水交替条纹组成的两个平面水平固体基底之间间隙的单一垂直二维液桥的运动。这扩展了我们之前的工作,即基底是均匀亲水或疏水的。在稳态条件下,我们以图案波长的函数计算了以下内容:(i) 移动桥的速度场,特别是它们的(时间平均)末端速度;(ii) 移动桥的变形,以桥接触角偏离其平衡值来衡量;(iii) 使移动桥断裂的最小外力。此外,我们还发现,即使在图案波长与桥宽相比非常小的情况下,在图案基底之间移动的桥也无法映射到在具有一定有效接触角的均匀基底之间移动的桥上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of liquid bridges between patterned surfaces

We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates consisting of alternating hydrophilic and hydrophobic stripes, using a multicomponent pseudopotential lattice Boltzmann method. This extends our earlier work where the substrates were uniformly hydrophilic or hydrophobic. In steady-state conditions, we calculate the following, as functions of pattern wavelength: (i) the velocity fields of moving bridges, in particular their (time-averaged) terminal velocities; (ii) the deformation of moving bridges, as measured by the deviation of bridge contact angles from their equilibrium values; (iii) the minimum applied force that breaks a moving bridge. In addition, we found that a bridge moving between patterned substrates cannot be mapped onto a bridge moving between uniform substrates endowed with some effective contact angle, even in the limit of very small pattern wavelength compared to bridge width.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
期刊最新文献
Effects of asymmetric rates and impulse interference in Rock-Paper-Scissors games Mathematical modeling of emission and control of carbon dioxide from infrastructure expansion activities Whitham modulation theory and Riemann problem for the Kundu–Eckhaus equation Sundman theorem revisited Fluid flow between two parallel active plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1