Calvin H. Lin , Chenghao Wan , Zhennan Ru , Connor Cremers , Pinak Mohapatra , Dolly L. Mantle , Kesha Tamakuwala , Ariana B. Höfelmann , Matthew W. Kanan , Juan Rivas-Davila , Jonathan A. Fan
{"title":"采用高频超材料反应器的电气化热化学反应系统","authors":"Calvin H. Lin , Chenghao Wan , Zhennan Ru , Connor Cremers , Pinak Mohapatra , Dolly L. Mantle , Kesha Tamakuwala , Ariana B. Höfelmann , Matthew W. Kanan , Juan Rivas-Davila , Jonathan A. Fan","doi":"10.1016/j.joule.2024.07.017","DOIUrl":null,"url":null,"abstract":"<div><div>We present metamaterial reactors as an innovative class of electrified thermochemical reactors that utilize high-frequency magnetic induction of an open-lattice metamaterial baffle to generate volumetric heat. A central design feature is the modeling of the metamaterial as an effective electrically conducting medium, abstracting its detailed microscopic geometry to a macroscopic susceptor description suitable for reactor-scale electromagnetic characterization. Co-design of the power electronics with the metamaterial provides design rules for efficient and volumetric heating, including the requirement for high induction frequencies. We implement lab-scale reactors with ceramic metamaterial baffles (39 mm in diameter) and megahertz-frequency power amplifiers to perform the reverse water-gas shift reaction, demonstrating reactor operation with near-unity heating efficiencies and radially uniform heating profiles. These clean energy concepts provide a broader context for structured reactors in which volumetric internal heating and complementary reaction engineering properties are collectively tailored to enable ideal operation regimes.</div></div>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrified thermochemical reaction systems with high-frequency metamaterial reactors\",\"authors\":\"Calvin H. Lin , Chenghao Wan , Zhennan Ru , Connor Cremers , Pinak Mohapatra , Dolly L. Mantle , Kesha Tamakuwala , Ariana B. Höfelmann , Matthew W. Kanan , Juan Rivas-Davila , Jonathan A. Fan\",\"doi\":\"10.1016/j.joule.2024.07.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present metamaterial reactors as an innovative class of electrified thermochemical reactors that utilize high-frequency magnetic induction of an open-lattice metamaterial baffle to generate volumetric heat. A central design feature is the modeling of the metamaterial as an effective electrically conducting medium, abstracting its detailed microscopic geometry to a macroscopic susceptor description suitable for reactor-scale electromagnetic characterization. Co-design of the power electronics with the metamaterial provides design rules for efficient and volumetric heating, including the requirement for high induction frequencies. We implement lab-scale reactors with ceramic metamaterial baffles (39 mm in diameter) and megahertz-frequency power amplifiers to perform the reverse water-gas shift reaction, demonstrating reactor operation with near-unity heating efficiencies and radially uniform heating profiles. These clean energy concepts provide a broader context for structured reactors in which volumetric internal heating and complementary reaction engineering properties are collectively tailored to enable ideal operation regimes.</div></div>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124003465\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003465","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Electrified thermochemical reaction systems with high-frequency metamaterial reactors
We present metamaterial reactors as an innovative class of electrified thermochemical reactors that utilize high-frequency magnetic induction of an open-lattice metamaterial baffle to generate volumetric heat. A central design feature is the modeling of the metamaterial as an effective electrically conducting medium, abstracting its detailed microscopic geometry to a macroscopic susceptor description suitable for reactor-scale electromagnetic characterization. Co-design of the power electronics with the metamaterial provides design rules for efficient and volumetric heating, including the requirement for high induction frequencies. We implement lab-scale reactors with ceramic metamaterial baffles (39 mm in diameter) and megahertz-frequency power amplifiers to perform the reverse water-gas shift reaction, demonstrating reactor operation with near-unity heating efficiencies and radially uniform heating profiles. These clean energy concepts provide a broader context for structured reactors in which volumetric internal heating and complementary reaction engineering properties are collectively tailored to enable ideal operation regimes.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.