隔日禁食对患有新发斯约格伦综合征的非肥胖糖尿病小鼠唾液腺干细胞区的影响。

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular cell research Pub Date : 2024-08-17 DOI:10.1016/j.bbamcr.2024.119817
Dongfang Li , Shoko Onodera , Qing Yu , Jing Zhou
{"title":"隔日禁食对患有新发斯约格伦综合征的非肥胖糖尿病小鼠唾液腺干细胞区的影响。","authors":"Dongfang Li ,&nbsp;Shoko Onodera ,&nbsp;Qing Yu ,&nbsp;Jing Zhou","doi":"10.1016/j.bbamcr.2024.119817","DOIUrl":null,"url":null,"abstract":"<div><p>Intermittent fasting exerts a profound beneficial influence on a spectrum of diseases through various mechanisms including regulation of immune responses, elimination of senescent- and pathogenic cells and improvement of stem cell-based tissue regeneration in a disease- and tissue-dependent manner. Our previous study demonstrated that alternate-day fasting (ADF) led to alleviation of xerostomia and sialadenitis in non-obese diabetic (NOD) mice, a well-defined model of Sjögren's syndrome (SS). This present study delved into the previously unexplored impacts of ADF in this disease setting and revealed that ADF increases the proportion of salivary gland stem cells (SGSCs), defined as the EpCAM<sup>hi</sup> cell population among the lineage marker negative submandibular gland (SMG) cells. Furthermore, ADF downregulated the expression of p16<sup>INK4a</sup>, a cellular senescence marker, which was concomitant with increased apoptosis and decreased expression and activity of NLRP3 inflammasomes in the SMGs, particularly in the SGSC-residing ductal compartments. RNA-sequencing analysis of purified SGSCs from NOD mice revealed that the significantly downregulated genes by ADF were mainly associated with sugar metabolism, amino acid biosynthetic process and MAPK signaling pathway, whereas the significantly upregulated genes related to fatty acid metabolic processes, among others. Collectively, these findings indicate that ADF increases the SGSC proportion, accompanied by a modulation of the SGSC property and a switch from sugar- to fatty acid-based metabolism. These findings lay the foundation for further investigation into the functionality of SGSCs influenced by ADF and shed light on the cellular and molecular mechanisms by which ADF exerts beneficial actions on salivary gland restoration in SS.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1871 7","pages":"Article 119817"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of alternate-day fasting on the salivary gland stem cell compartments in non-obese diabetic mice with newly established Sjögren's syndrome\",\"authors\":\"Dongfang Li ,&nbsp;Shoko Onodera ,&nbsp;Qing Yu ,&nbsp;Jing Zhou\",\"doi\":\"10.1016/j.bbamcr.2024.119817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intermittent fasting exerts a profound beneficial influence on a spectrum of diseases through various mechanisms including regulation of immune responses, elimination of senescent- and pathogenic cells and improvement of stem cell-based tissue regeneration in a disease- and tissue-dependent manner. Our previous study demonstrated that alternate-day fasting (ADF) led to alleviation of xerostomia and sialadenitis in non-obese diabetic (NOD) mice, a well-defined model of Sjögren's syndrome (SS). This present study delved into the previously unexplored impacts of ADF in this disease setting and revealed that ADF increases the proportion of salivary gland stem cells (SGSCs), defined as the EpCAM<sup>hi</sup> cell population among the lineage marker negative submandibular gland (SMG) cells. Furthermore, ADF downregulated the expression of p16<sup>INK4a</sup>, a cellular senescence marker, which was concomitant with increased apoptosis and decreased expression and activity of NLRP3 inflammasomes in the SMGs, particularly in the SGSC-residing ductal compartments. RNA-sequencing analysis of purified SGSCs from NOD mice revealed that the significantly downregulated genes by ADF were mainly associated with sugar metabolism, amino acid biosynthetic process and MAPK signaling pathway, whereas the significantly upregulated genes related to fatty acid metabolic processes, among others. Collectively, these findings indicate that ADF increases the SGSC proportion, accompanied by a modulation of the SGSC property and a switch from sugar- to fatty acid-based metabolism. These findings lay the foundation for further investigation into the functionality of SGSCs influenced by ADF and shed light on the cellular and molecular mechanisms by which ADF exerts beneficial actions on salivary gland restoration in SS.</p></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1871 7\",\"pages\":\"Article 119817\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488924001605\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924001605","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

间歇性禁食通过各种机制对一系列疾病产生深远的有益影响,这些机制包括调节免疫反应、消除衰老和致病细胞,以及以疾病和组织为基础改善干细胞组织再生。我们之前的研究表明,隔日禁食(ADF)可缓解非肥胖糖尿病(NOD)小鼠的口腔干燥症和唾液腺炎,NOD是一种明确定义的斯约格伦综合征(SS)模型。本研究深入探讨了ADF在这种疾病环境中的影响,发现ADF增加了唾液腺干细胞(SGSCs)的比例,SGSCs被定义为系标记阴性的颌下腺(SMG)细胞中的EpCAMhi细胞群。此外,ADF还下调了细胞衰老标志物p16INK4a的表达,这与SMG细胞凋亡增加、NLRP3炎性体表达和活性降低同时发生,尤其是在SGSC驻留的导管区。对NOD小鼠纯化的SGSCs进行的RNA序列分析表明,ADF显著下调的基因主要与糖代谢、氨基酸生物合成过程和MAPK信号通路有关,而显著上调的基因则与脂肪酸代谢过程等有关。总之,这些发现表明,ADF增加了SGSC的比例,同时调节了SGSC的特性,并使糖代谢转向脂肪酸代谢。这些发现为进一步研究 SGSCs 受 ADF 影响的功能奠定了基础,并揭示了 ADF 对 SS 唾液腺恢复产生有益作用的细胞和分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of alternate-day fasting on the salivary gland stem cell compartments in non-obese diabetic mice with newly established Sjögren's syndrome

Intermittent fasting exerts a profound beneficial influence on a spectrum of diseases through various mechanisms including regulation of immune responses, elimination of senescent- and pathogenic cells and improvement of stem cell-based tissue regeneration in a disease- and tissue-dependent manner. Our previous study demonstrated that alternate-day fasting (ADF) led to alleviation of xerostomia and sialadenitis in non-obese diabetic (NOD) mice, a well-defined model of Sjögren's syndrome (SS). This present study delved into the previously unexplored impacts of ADF in this disease setting and revealed that ADF increases the proportion of salivary gland stem cells (SGSCs), defined as the EpCAMhi cell population among the lineage marker negative submandibular gland (SMG) cells. Furthermore, ADF downregulated the expression of p16INK4a, a cellular senescence marker, which was concomitant with increased apoptosis and decreased expression and activity of NLRP3 inflammasomes in the SMGs, particularly in the SGSC-residing ductal compartments. RNA-sequencing analysis of purified SGSCs from NOD mice revealed that the significantly downregulated genes by ADF were mainly associated with sugar metabolism, amino acid biosynthetic process and MAPK signaling pathway, whereas the significantly upregulated genes related to fatty acid metabolic processes, among others. Collectively, these findings indicate that ADF increases the SGSC proportion, accompanied by a modulation of the SGSC property and a switch from sugar- to fatty acid-based metabolism. These findings lay the foundation for further investigation into the functionality of SGSCs influenced by ADF and shed light on the cellular and molecular mechanisms by which ADF exerts beneficial actions on salivary gland restoration in SS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
期刊最新文献
Iron‑sulfur cluster biogenesis and function in Apicomplexa parasites. Targeting SphK1/S1PR3 axis ameliorates sepsis-induced multiple organ injury via orchestration of macrophage polarization and glycolysis. Impaired insulin signaling and diet-induced type 3 diabetes pathophysiology increase amyloid β expression in the Drosophila model of Alzheimer's disease Interplay of force and local mechanisms in axonal plasticity and beyond Oncogenic KRAS mutations modulate BAX-mediated cell death
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1