通过超图随机漫步识别单个患者中相互合作的癌症驱动基因

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Biomedical Informatics Pub Date : 2024-08-17 DOI:10.1016/j.jbi.2024.104710
Tong Zhang , Shao-Wu Zhang , Ming-Yu Xie , Yan Li
{"title":"通过超图随机漫步识别单个患者中相互合作的癌症驱动基因","authors":"Tong Zhang ,&nbsp;Shao-Wu Zhang ,&nbsp;Ming-Yu Xie ,&nbsp;Yan Li","doi":"10.1016/j.jbi.2024.104710","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Identifying cancer driver genes, especially rare or patient-specific cancer driver genes, is a primary goal in cancer therapy. Although researchers have proposed some methods to tackle this problem, these methods mostly identify cancer driver genes at single gene level, overlooking the cooperative relationship among cancer driver genes. Identifying cooperating cancer driver genes in individual patients is pivotal for understanding cancer etiology and advancing the development of personalized therapies.</p></div><div><h3>Methods</h3><p>Here, we propose a novel Personalized Cooperating cancer Driver Genes (PCoDG) method by using hypergraph random walk to identify the cancer driver genes that cooperatively drive individual patient cancer progression. By leveraging the powerful ability of hypergraph in representing multi-way relationships, PCoDG first employs the personalized hypergraph to depict the complex interactions among mutated genes and differentially expressed genes of an individual patient. Then, a hypergraph random walk algorithm based on hyperedge similarity is utilized to calculate the importance scores of mutated genes, integrating these scores with signaling pathway data to identify the cooperating cancer driver genes in individual patients.</p></div><div><h3>Results</h3><p>The experimental results on three TCGA cancer datasets (i.e., BRCA, LUAD, and COADREAD) demonstrate the effectiveness of PCoDG in identifying personalized cooperating cancer driver genes. These genes identified by PCoDG not only offer valuable insights into patient stratification correlating with clinical outcomes, but also provide an useful reference resource for tailoring personalized treatments.</p></div><div><h3>Conclusion</h3><p>We propose a novel method that can effectively identify cooperating cancer driver genes for individual patients, thereby deepening our understanding of the cooperative relationship among personalized cancer driver genes and advancing the development of precision oncology.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104710"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying cooperating cancer driver genes in individual patients through hypergraph random walk\",\"authors\":\"Tong Zhang ,&nbsp;Shao-Wu Zhang ,&nbsp;Ming-Yu Xie ,&nbsp;Yan Li\",\"doi\":\"10.1016/j.jbi.2024.104710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Identifying cancer driver genes, especially rare or patient-specific cancer driver genes, is a primary goal in cancer therapy. Although researchers have proposed some methods to tackle this problem, these methods mostly identify cancer driver genes at single gene level, overlooking the cooperative relationship among cancer driver genes. Identifying cooperating cancer driver genes in individual patients is pivotal for understanding cancer etiology and advancing the development of personalized therapies.</p></div><div><h3>Methods</h3><p>Here, we propose a novel Personalized Cooperating cancer Driver Genes (PCoDG) method by using hypergraph random walk to identify the cancer driver genes that cooperatively drive individual patient cancer progression. By leveraging the powerful ability of hypergraph in representing multi-way relationships, PCoDG first employs the personalized hypergraph to depict the complex interactions among mutated genes and differentially expressed genes of an individual patient. Then, a hypergraph random walk algorithm based on hyperedge similarity is utilized to calculate the importance scores of mutated genes, integrating these scores with signaling pathway data to identify the cooperating cancer driver genes in individual patients.</p></div><div><h3>Results</h3><p>The experimental results on three TCGA cancer datasets (i.e., BRCA, LUAD, and COADREAD) demonstrate the effectiveness of PCoDG in identifying personalized cooperating cancer driver genes. These genes identified by PCoDG not only offer valuable insights into patient stratification correlating with clinical outcomes, but also provide an useful reference resource for tailoring personalized treatments.</p></div><div><h3>Conclusion</h3><p>We propose a novel method that can effectively identify cooperating cancer driver genes for individual patients, thereby deepening our understanding of the cooperative relationship among personalized cancer driver genes and advancing the development of precision oncology.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"157 \",\"pages\":\"Article 104710\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S153204642400128X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S153204642400128X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的:确定癌症驱动基因,尤其是罕见或患者特异性癌症驱动基因,是癌症治疗的首要目标。虽然研究人员提出了一些方法来解决这一问题,但这些方法大多是从单个基因水平识别癌症驱动基因,忽略了癌症驱动基因之间的合作关系。方法:在此,我们提出了一种新型的个性化合作癌症驱动基因(PCoDG)方法,利用超图随机游走来识别合作驱动个体患者癌症进展的癌症驱动基因。PCoDG 利用超图在表示多向关系方面的强大能力,首先使用个性化超图来描述个体患者的突变基因和差异表达基因之间的复杂相互作用。然后,利用基于超边缘相似性的超图随机漫步算法计算突变基因的重要性得分,并将这些得分与信号通路数据整合,以确定个体患者中的合作癌症驱动基因:在三个 TCGA 癌症数据集(即 BRCA、LUAD 和 COADREAD)上的实验结果表明,PCoDG 在识别个性化合作癌症驱动基因方面非常有效。PCoDG 发现的这些基因不仅为患者分层提供了与临床结果相关的宝贵见解,还为定制个性化治疗提供了有用的参考资源:我们提出了一种新方法,它能有效识别个体患者的合作癌症驱动基因,从而加深我们对个性化癌症驱动基因之间合作关系的理解,推动精准肿瘤学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying cooperating cancer driver genes in individual patients through hypergraph random walk

Objective

Identifying cancer driver genes, especially rare or patient-specific cancer driver genes, is a primary goal in cancer therapy. Although researchers have proposed some methods to tackle this problem, these methods mostly identify cancer driver genes at single gene level, overlooking the cooperative relationship among cancer driver genes. Identifying cooperating cancer driver genes in individual patients is pivotal for understanding cancer etiology and advancing the development of personalized therapies.

Methods

Here, we propose a novel Personalized Cooperating cancer Driver Genes (PCoDG) method by using hypergraph random walk to identify the cancer driver genes that cooperatively drive individual patient cancer progression. By leveraging the powerful ability of hypergraph in representing multi-way relationships, PCoDG first employs the personalized hypergraph to depict the complex interactions among mutated genes and differentially expressed genes of an individual patient. Then, a hypergraph random walk algorithm based on hyperedge similarity is utilized to calculate the importance scores of mutated genes, integrating these scores with signaling pathway data to identify the cooperating cancer driver genes in individual patients.

Results

The experimental results on three TCGA cancer datasets (i.e., BRCA, LUAD, and COADREAD) demonstrate the effectiveness of PCoDG in identifying personalized cooperating cancer driver genes. These genes identified by PCoDG not only offer valuable insights into patient stratification correlating with clinical outcomes, but also provide an useful reference resource for tailoring personalized treatments.

Conclusion

We propose a novel method that can effectively identify cooperating cancer driver genes for individual patients, thereby deepening our understanding of the cooperative relationship among personalized cancer driver genes and advancing the development of precision oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
期刊最新文献
Early multi-cancer detection through deep learning: An anomaly detection approach using Variational Autoencoder. Importance of variables from different time frames for predicting self-harm using health system data Cross-Modal self-supervised vision language pre-training with multiple objectives for medical visual question answering Machine learning approaches for the discovery of clinical pathways from patient data: A systematic review MultiADE: A Multi-domain benchmark for Adverse Drug Event extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1