预测葡萄糖值:持续葡萄糖监测的新时代。

IF 4.1 Q2 ENDOCRINOLOGY & METABOLISM Journal of Diabetes Science and Technology Pub Date : 2024-09-01 Epub Date: 2024-08-19 DOI:10.1177/19322968241271925
Bernhard Kulzer, Lutz Heinemann
{"title":"预测葡萄糖值:持续葡萄糖监测的新时代。","authors":"Bernhard Kulzer, Lutz Heinemann","doi":"10.1177/19322968241271925","DOIUrl":null,"url":null,"abstract":"<p><p>The last 25 years of CGM have been characterized above all by providing better and more accurate glucose values in real time and analyzing the measured glucose values. Trend arrows are the only way to look into the future, but they are often too imprecise for therapy adjustment. While AID systems provide algorithms to use glucose values for glucose control, this has not been possible with stand-alone CGM systems, which are most used by people with diabetes. By analyzing the measured values with algorithms, often supported by AI, this should be possible in the future. This provides the user with important information about the further course of the glucose level, such as during the night. Predictive approaches can be used by next-generation CGM systems. These systems can proactively prevent glucose events such as hypo- or hyperglycemia. With the Accu-Chek® SmartGuide Predict app, an integral part of a novel CGM system, and the Glucose Predict (GP) feature, people with diabetes have the first commercially available CGM system with predictive algorithms. It characterizes the CGM systems of the future, which not only analyze past values and current glucose values in the future, but also use these values to predict future glucose progression.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418460/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting Glucose Values: A New Era for Continuous Glucose Monitoring.\",\"authors\":\"Bernhard Kulzer, Lutz Heinemann\",\"doi\":\"10.1177/19322968241271925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The last 25 years of CGM have been characterized above all by providing better and more accurate glucose values in real time and analyzing the measured glucose values. Trend arrows are the only way to look into the future, but they are often too imprecise for therapy adjustment. While AID systems provide algorithms to use glucose values for glucose control, this has not been possible with stand-alone CGM systems, which are most used by people with diabetes. By analyzing the measured values with algorithms, often supported by AI, this should be possible in the future. This provides the user with important information about the further course of the glucose level, such as during the night. Predictive approaches can be used by next-generation CGM systems. These systems can proactively prevent glucose events such as hypo- or hyperglycemia. With the Accu-Chek® SmartGuide Predict app, an integral part of a novel CGM system, and the Glucose Predict (GP) feature, people with diabetes have the first commercially available CGM system with predictive algorithms. It characterizes the CGM systems of the future, which not only analyze past values and current glucose values in the future, but also use these values to predict future glucose progression.</p>\",\"PeriodicalId\":15475,\"journal\":{\"name\":\"Journal of Diabetes Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418460/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19322968241271925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241271925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

CGM 在过去 25 年中的主要特点是实时提供更好、更准确的血糖值,并对测量的血糖值进行分析。趋势箭头是展望未来的唯一方法,但对于调整疗法而言,趋势箭头往往过于不精确。虽然 AID 系统提供了利用血糖值控制血糖的算法,但糖尿病患者使用最多的独立 CGM 系统却无法做到这一点。通过通常由人工智能支持的算法对测量值进行分析,这在未来应该可以实现。这将为用户提供有关血糖水平进一步变化的重要信息,例如夜间血糖水平。下一代 CGM 系统可采用预测方法。这些系统可以主动预防低血糖或高血糖等血糖事件的发生。Accu-Chek® SmartGuide Predict 应用程序是新型 CGM 系统不可或缺的一部分,它的 Glucose Predict(GP)功能使糖尿病患者拥有了第一款具有预测算法的商用 CGM 系统。它是未来 CGM 系统的特征,不仅能分析过去的血糖值和未来的血糖值,还能利用这些值预测未来的血糖进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Glucose Values: A New Era for Continuous Glucose Monitoring.

The last 25 years of CGM have been characterized above all by providing better and more accurate glucose values in real time and analyzing the measured glucose values. Trend arrows are the only way to look into the future, but they are often too imprecise for therapy adjustment. While AID systems provide algorithms to use glucose values for glucose control, this has not been possible with stand-alone CGM systems, which are most used by people with diabetes. By analyzing the measured values with algorithms, often supported by AI, this should be possible in the future. This provides the user with important information about the further course of the glucose level, such as during the night. Predictive approaches can be used by next-generation CGM systems. These systems can proactively prevent glucose events such as hypo- or hyperglycemia. With the Accu-Chek® SmartGuide Predict app, an integral part of a novel CGM system, and the Glucose Predict (GP) feature, people with diabetes have the first commercially available CGM system with predictive algorithms. It characterizes the CGM systems of the future, which not only analyze past values and current glucose values in the future, but also use these values to predict future glucose progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Diabetes Science and Technology
Journal of Diabetes Science and Technology Medicine-Internal Medicine
CiteScore
7.50
自引率
12.00%
发文量
148
期刊介绍: The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.
期刊最新文献
Assessing Battery-Related Challenges in Insulin Pump Therapy: Insights From a Brazilian Diabetes Center. Assessing the Accuracy of a Continuous Glucose Monitoring System Across Varying Exercise Intensities and Blood Lactate Concentrations in Healthy Male Athletes. Older Adults Benefit From Virtual Support for Continuous Glucose Monitor Use But Require Longer Visits. Updated Psychosocial Surveys With Continuous Glucose Monitoring Items for Youth With Type 1 Diabetes and Their Caregivers. Clinical Accuracy of a Glucose Oxidase-Based Blood Glucose Test-Strip Across Extremes of Oxygen Partial Pressure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1