通过公平驱动的人工智能应用,加强神经肿瘤治疗。

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY Neuro-oncology Pub Date : 2024-11-04 DOI:10.1093/neuonc/noae127
Mulki Mehari, Youssef Sibih, Abraham Dada, Susan M Chang, Patrick Y Wen, Annette M Molinaro, Ugonma N Chukwueke, Joshua A Budhu, Sadhana Jackson, J Ricardo McFaline-Figueroa, Alyx Porter, Shawn L Hervey-Jumper
{"title":"通过公平驱动的人工智能应用,加强神经肿瘤治疗。","authors":"Mulki Mehari, Youssef Sibih, Abraham Dada, Susan M Chang, Patrick Y Wen, Annette M Molinaro, Ugonma N Chukwueke, Joshua A Budhu, Sadhana Jackson, J Ricardo McFaline-Figueroa, Alyx Porter, Shawn L Hervey-Jumper","doi":"10.1093/neuonc/noae127","DOIUrl":null,"url":null,"abstract":"<p><p>The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial intelligence (AI) to enrich tumor diagnosis and more accurately predict treatment response, postoperative complications, and survival, equity-driven applications of AI have been limited. However, AI applications to advance health equity in the broader medical field have the potential to serve as practical blueprints to address known disparities in neuro-oncologic care. In this consensus review, we will describe current applications of AI in neuro-oncology, postulate viable AI solutions for the most pressing inequities in neuro-oncology based on broader literature, propose a framework for the effective integration of equity into AI-based neuro-oncology research, and close with the limitations of AI.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":"1951-1963"},"PeriodicalIF":16.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534320/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing neuro-oncology care through equity-driven applications of artificial intelligence.\",\"authors\":\"Mulki Mehari, Youssef Sibih, Abraham Dada, Susan M Chang, Patrick Y Wen, Annette M Molinaro, Ugonma N Chukwueke, Joshua A Budhu, Sadhana Jackson, J Ricardo McFaline-Figueroa, Alyx Porter, Shawn L Hervey-Jumper\",\"doi\":\"10.1093/neuonc/noae127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial intelligence (AI) to enrich tumor diagnosis and more accurately predict treatment response, postoperative complications, and survival, equity-driven applications of AI have been limited. However, AI applications to advance health equity in the broader medical field have the potential to serve as practical blueprints to address known disparities in neuro-oncologic care. In this consensus review, we will describe current applications of AI in neuro-oncology, postulate viable AI solutions for the most pressing inequities in neuro-oncology based on broader literature, propose a framework for the effective integration of equity into AI-based neuro-oncology research, and close with the limitations of AI.</p>\",\"PeriodicalId\":19377,\"journal\":{\"name\":\"Neuro-oncology\",\"volume\":\" \",\"pages\":\"1951-1963\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534320/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/neuonc/noae127\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae127","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤患者的病程和临床结果不仅取决于肿瘤的分子和组织学特征,还取决于患者的人口统计学特征和健康的社会决定因素。虽然目前神经肿瘤学的研究已广泛利用人工智能(AI)来丰富肿瘤诊断,并更准确地预测治疗反应、术后并发症和生存期,但以公平为导向的人工智能应用还很有限。然而,在更广泛的医疗领域,促进健康公平的人工智能应用有可能成为解决神经肿瘤治疗中已知差距的实用蓝图。在这篇共识综述中,我们将介绍目前人工智能在神经肿瘤学中的应用,根据更广泛的文献,针对神经肿瘤学中最紧迫的不公平问题提出可行的人工智能解决方案,提出将公平有效融入基于人工智能的神经肿瘤学研究的框架,最后指出人工智能的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing neuro-oncology care through equity-driven applications of artificial intelligence.

The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial intelligence (AI) to enrich tumor diagnosis and more accurately predict treatment response, postoperative complications, and survival, equity-driven applications of AI have been limited. However, AI applications to advance health equity in the broader medical field have the potential to serve as practical blueprints to address known disparities in neuro-oncologic care. In this consensus review, we will describe current applications of AI in neuro-oncology, postulate viable AI solutions for the most pressing inequities in neuro-oncology based on broader literature, propose a framework for the effective integration of equity into AI-based neuro-oncology research, and close with the limitations of AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
期刊最新文献
Distinct epigenetic and transcriptional profiles of Epstein-Barr virus (EBV) positive and negative primary CNS lymphomas. Inhibition of Mitochondrial Bioenergetics and Hypoxia to Radiosensitize Diffuse Intrinsic Pontine Glioma. EANO guideline on molecular testing of meningiomas for targeted therapy selection. G-quadruplex stabilizer CX-5461 effectively combines with radiotherapy to target ATRX-deficient malignant glioma. Longitudinal multimodal profiling of IDH-wildtype glioblastoma reveals the molecular evolution and cellular phenotypes underlying prognostically different treatment responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1