Peng He , Biao Zhang , Chao Lu , Lei-lei Meng , Wen-qiang Zou
{"title":"优化分布式重入异构混合流程车间批量调度问题:迭代构建-局部搜索-重构算法","authors":"Peng He , Biao Zhang , Chao Lu , Lei-lei Meng , Wen-qiang Zou","doi":"10.1016/j.swevo.2024.101681","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the distributed hybrid flowshop scheduling problem (DHFSP) has garnered widespread attention due to the continuous emergence of practical challenges. The production model, characterized by multiple varieties and small batches, is widely observed in the industrial sector. Additionally, in various real-world scenarios, batches often undergo repeated processes across multiple stages. This paper addresses the research gap by introducing the reentrant nature of batches and the heterogeneity of factories into the DHFSP, resulting in a novel problem referred to as the distributed reentrant heterogeneous hybrid flowshop batch scheduling problem (DRHHFBSP). To tackle this problem, we propose a mixed-integer linear programming (MILP) model. Given that this problem falls into the NP-hard category, an iterative construction-local search-reconstruction algorithm (ICLSRA) is designed. Specifically designed by incorporating construction, local search, and reconstruction processes that have different roles, this algorithm strikes a balance between local and global search. Comparative analysis with the MILP model and state-of-the-art algorithms demonstrates the superiority of ICLSRA in achieving efficient solutions for the DRHHFBSP.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101681"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing distributed reentrant heterogeneous hybrid flowshop batch scheduling problem: Iterative construction-local search-reconstruction algorithm\",\"authors\":\"Peng He , Biao Zhang , Chao Lu , Lei-lei Meng , Wen-qiang Zou\",\"doi\":\"10.1016/j.swevo.2024.101681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the distributed hybrid flowshop scheduling problem (DHFSP) has garnered widespread attention due to the continuous emergence of practical challenges. The production model, characterized by multiple varieties and small batches, is widely observed in the industrial sector. Additionally, in various real-world scenarios, batches often undergo repeated processes across multiple stages. This paper addresses the research gap by introducing the reentrant nature of batches and the heterogeneity of factories into the DHFSP, resulting in a novel problem referred to as the distributed reentrant heterogeneous hybrid flowshop batch scheduling problem (DRHHFBSP). To tackle this problem, we propose a mixed-integer linear programming (MILP) model. Given that this problem falls into the NP-hard category, an iterative construction-local search-reconstruction algorithm (ICLSRA) is designed. Specifically designed by incorporating construction, local search, and reconstruction processes that have different roles, this algorithm strikes a balance between local and global search. Comparative analysis with the MILP model and state-of-the-art algorithms demonstrates the superiority of ICLSRA in achieving efficient solutions for the DRHHFBSP.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"90 \",\"pages\":\"Article 101681\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002190\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002190","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
In recent years, the distributed hybrid flowshop scheduling problem (DHFSP) has garnered widespread attention due to the continuous emergence of practical challenges. The production model, characterized by multiple varieties and small batches, is widely observed in the industrial sector. Additionally, in various real-world scenarios, batches often undergo repeated processes across multiple stages. This paper addresses the research gap by introducing the reentrant nature of batches and the heterogeneity of factories into the DHFSP, resulting in a novel problem referred to as the distributed reentrant heterogeneous hybrid flowshop batch scheduling problem (DRHHFBSP). To tackle this problem, we propose a mixed-integer linear programming (MILP) model. Given that this problem falls into the NP-hard category, an iterative construction-local search-reconstruction algorithm (ICLSRA) is designed. Specifically designed by incorporating construction, local search, and reconstruction processes that have different roles, this algorithm strikes a balance between local and global search. Comparative analysis with the MILP model and state-of-the-art algorithms demonstrates the superiority of ICLSRA in achieving efficient solutions for the DRHHFBSP.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.