用于 EPMA 分类和矿物组绘图的监督机器学习程序

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-08-19 DOI:10.1016/j.acags.2024.100186
R. Cossio , S. Ghignone , A. Borghi , A. Corno , G. Vaggelli
{"title":"用于 EPMA 分类和矿物组绘图的监督机器学习程序","authors":"R. Cossio ,&nbsp;S. Ghignone ,&nbsp;A. Borghi ,&nbsp;A. Corno ,&nbsp;G. Vaggelli","doi":"10.1016/j.acags.2024.100186","DOIUrl":null,"url":null,"abstract":"<div><p>An analytical method to automatically characterize rock samples for geological or petrological purposes is here proposed, by applying machine learning approach (ML) as a protocol for saving experimental times and costs.</p><p>Proper machine learning algorithms, applied to automatically acquired microanalytical data (i.e., Electron Probe Micro Analysis, EPMA), carried out with a SEM-EDS microprobe on randomly selected areas from a petrographic polished thin section, are trained, used, tested, and reported.</p><p>Learning and Validation phases are developed with literature mineral databases of electron microprobe analyses on 15 main rock-forming mineral groups. The Prediction phase is tested using an eclogite rock from the Western Alps, considered as an unknown sample: randomly selected areas are acquired as backscattered images whose intervals of gray levels, appropriately set in the gray level histogram, allow the automated particle mineral separation: automated separating Oxford Instruments Aztec Feature ® packages and a mineral plotting software are applied for mineral particle separation, crystal chemical formula calculation and plotting.</p><p>Finally, a microanalytical analysis is performed on each separated mineral particle. The crystal chemical formula is calculated, and the final classification plots are automatically produced for any determined mineral. The final results show good accuracy and analytical ease and assess the proper nature of the unknown eclogite rock sample. Therefore, the proposed analytical protocol is especially recommended in those scenarios where a large flow of microanalytical data is automatically acquired and needs to be processed.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100186"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000338/pdfft?md5=5f9a7ff05910f5e248a1bc9ca4b633a6&pid=1-s2.0-S2590197424000338-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A supervised machine learning procedure for EPMA classification and plotting of mineral groups\",\"authors\":\"R. Cossio ,&nbsp;S. Ghignone ,&nbsp;A. Borghi ,&nbsp;A. Corno ,&nbsp;G. Vaggelli\",\"doi\":\"10.1016/j.acags.2024.100186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An analytical method to automatically characterize rock samples for geological or petrological purposes is here proposed, by applying machine learning approach (ML) as a protocol for saving experimental times and costs.</p><p>Proper machine learning algorithms, applied to automatically acquired microanalytical data (i.e., Electron Probe Micro Analysis, EPMA), carried out with a SEM-EDS microprobe on randomly selected areas from a petrographic polished thin section, are trained, used, tested, and reported.</p><p>Learning and Validation phases are developed with literature mineral databases of electron microprobe analyses on 15 main rock-forming mineral groups. The Prediction phase is tested using an eclogite rock from the Western Alps, considered as an unknown sample: randomly selected areas are acquired as backscattered images whose intervals of gray levels, appropriately set in the gray level histogram, allow the automated particle mineral separation: automated separating Oxford Instruments Aztec Feature ® packages and a mineral plotting software are applied for mineral particle separation, crystal chemical formula calculation and plotting.</p><p>Finally, a microanalytical analysis is performed on each separated mineral particle. The crystal chemical formula is calculated, and the final classification plots are automatically produced for any determined mineral. The final results show good accuracy and analytical ease and assess the proper nature of the unknown eclogite rock sample. Therefore, the proposed analytical protocol is especially recommended in those scenarios where a large flow of microanalytical data is automatically acquired and needs to be processed.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"23 \",\"pages\":\"Article 100186\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000338/pdfft?md5=5f9a7ff05910f5e248a1bc9ca4b633a6&pid=1-s2.0-S2590197424000338-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于地质或岩石学目的的自动表征岩石样本的分析方法,通过应用机器学习方法(ML)作为节省实验时间和成本的协议、使用电子显微镜-电子显微镜分析(SEM-EDS)微探针对岩石学抛光薄片中随机选取的区域进行电子显微镜分析(EPMA),训练、使用、测试和报告适当的机器学习算法。预测阶段使用来自西阿尔卑斯山的埃克洛辉石岩石进行测试,该岩石被视为未知样本:随机选择区域获取反向散射图像,在灰度直方图中适当设置灰度级间隔,从而实现颗粒矿物的自动分离:应用牛津仪器公司的自动分离 Aztec Feature ® 软件包和矿物绘图软件进行矿物颗粒分离、晶体化学式计算和绘图。最后,对每个分离出来的矿物颗粒进行显微分析,计算晶体化学式,并自动生成任何已确定矿物的最终分类图。最终结果显示了良好的准确性和分析的简易性,并评估了未知斜长岩岩石样本的适当性质。因此,在自动获取大量微量分析数据并需要处理的情况下,特别推荐使用建议的分析方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A supervised machine learning procedure for EPMA classification and plotting of mineral groups

An analytical method to automatically characterize rock samples for geological or petrological purposes is here proposed, by applying machine learning approach (ML) as a protocol for saving experimental times and costs.

Proper machine learning algorithms, applied to automatically acquired microanalytical data (i.e., Electron Probe Micro Analysis, EPMA), carried out with a SEM-EDS microprobe on randomly selected areas from a petrographic polished thin section, are trained, used, tested, and reported.

Learning and Validation phases are developed with literature mineral databases of electron microprobe analyses on 15 main rock-forming mineral groups. The Prediction phase is tested using an eclogite rock from the Western Alps, considered as an unknown sample: randomly selected areas are acquired as backscattered images whose intervals of gray levels, appropriately set in the gray level histogram, allow the automated particle mineral separation: automated separating Oxford Instruments Aztec Feature ® packages and a mineral plotting software are applied for mineral particle separation, crystal chemical formula calculation and plotting.

Finally, a microanalytical analysis is performed on each separated mineral particle. The crystal chemical formula is calculated, and the final classification plots are automatically produced for any determined mineral. The final results show good accuracy and analytical ease and assess the proper nature of the unknown eclogite rock sample. Therefore, the proposed analytical protocol is especially recommended in those scenarios where a large flow of microanalytical data is automatically acquired and needs to be processed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1